Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Scientists Unravel Antibacterial Mechanisms of Plasma Components

By BiotechDaily International staff writers
Posted on 10 Oct 2013
Image: Plasma Reactor – cold atmospheric-pressure plasmas are generated and tested for effects on bacterial cells and molecules (Photo courtesy of Jan-Wilm Lackmann, Ruhr University Bochum.)
Image: Plasma Reactor – cold atmospheric-pressure plasmas are generated and tested for effects on bacterial cells and molecules (Photo courtesy of Jan-Wilm Lackmann, Ruhr University Bochum.)
Scientists have unraveled the main mechanisms of the antibacterial action of cold atmospheric-pressure plasmas, further indicating their potential value as disinfection and antibiotic agents.

As they destroy bacteria very efficiently, atmospheric-pressure plasmas constitute an alternative to chemical disinfectants and are already being used as surgical tools, for example in nasal and intestinal polyp extraction. Their disinfectant properties may also be of interest for other applications, including wound treatment, cosmetic care, and in certain uses even as alternatives to antibiotics. “In ten years, bacteria might have developed resistance against all antibiotics that are available to us today,” said Junior Professor Dr. Julia Bandow, head of the Junior Research Group Microbial Antibiotic Research at Ruhr-Universität Bochum (Ruhr University Bochum (RUB); Bochum, Germany). Without antibiotics, most surgeries would become impossible due to high infection rates.

Cold atmospheric-pressure plasmas attack the prokaryote cell envelope, proteins, and DNA. “This is too great a challenge for the repair mechanisms and the stress response systems of bacteria,” said Prof. Bandow; “In order to develop plasmas for specific applications, for example for treating chronic wounds or for root canal disinfection, it is important to understand how they affect cells. Thus, undesirable side effects may be avoided right from the start.”

Effects of the plasma-emitted particles have now been investigated by a team of biologists, plasma physicists, and chemists at RUB. Depending on their specific composition, plasmas may contain different components, for example ions, radicals, or light in the ultraviolet spectrum—UV photons. Until now, scientists have had almost no understanding about which components of the complex mixture contribute to which extent to the antibacterial effect. Prof. Bandow’s team has analyzed the effect of reactive particles (radicals and ozone) and UV photons on both the cellular level and on the level of single biomolecules, namely DNA and proteins. On the cellular level, the reactive particles alone were most effective: they destroyed the cell envelope (UV radiation did not). On the molecular level, both plasma components were effective: both UV radiation and reactive particles damaged the DNA; in addition, the reactive particles inactivated proteins. Thus, damage to the cellular envelope as well as to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.

The study was published September 25, 2013, in the Journal of the Royal Society Interface.

Related Links:

Ruhr University Bochum



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.