Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Breakthrough May Revolutionize Preclinical Imaging

By BiotechDaily International staff writers
Posted on 07 Oct 2013
Print article
Image: The magnetic particle imaging (MPI) system is an entirely new technology for preclinical imaging (Photo courtesy of Bruker).
Image: The magnetic particle imaging (MPI) system is an entirely new technology for preclinical imaging (Photo courtesy of Bruker).
A novel imaging technique for disease studies, translational research, and drug discovery will soon be made available to the biotechnology research community.

Bruker (Billerica, MA, USA) has announced the world’s first magnetic particle imaging (MPI) system, a novel technology for preclinical imaging. The MPI tomographic imaging technique relies on the detection of the magnetic properties of iron-oxide nanoparticles injected into the bloodstream to produce three-dimensional images. The system has been used to produce images that accurately captured the real-time physiological activity of a mouse's cardiovascular system,

The Bruker preclinical MPI scanner was developed in collaboration with Royal Philips (Amsterdam, The Netherlands), in a partnership that combined Bruker’s leadership in analytical magnetic resonance instruments with Philips’ strengths in medical imaging technology. The partners will co-market the preclinical MPI scanner.

Dr. Michael Heidenreich, technical director at Bruker, said, "We are very pleased about this breakthrough in preclinical imaging and our collaboration with Philips on this exciting technology. Magnetic particle imaging is a novel imaging modality that is expected to enable scientists to address an extensive range of new issues in preclinical research. MPI nicely complements Bruker’s preclinical imaging product portfolio of now nine different modalities. The highly sensitive visualization of functional characteristics in vivo at high temporal resolution offers great potential for small animal imaging, especially when combined with high spatial resolution morphological MRI."

"Magnetic particle imaging represents a fundamentally new imaging modality with an exceptional ability to image in vivo functional behavior," said Homer Pien, chief technology officer at Philips. "We are particularly excited about its potential for providing new insights into cardiovascular disease, cancer, and stem cell therapies. Going forward, I am convinced that the results from the research studies conducted with preclinical MPI systems will provide valuable guidance for our ongoing development of a whole-body clinical MPI system."

Related Links:
Bruker
Royal Philips


Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.