Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Live Images of Growing Tumors Reveals Cancer’s Hidden Mechanisms

By BiotechDaily International staff writers
Posted on 25 Sep 2013
Image: The new imaging tool reveals strikingly different networks of blood vessels surrounding different types of tumors in a mouse model. Left: breast cancer in the breast. Middle: metastatic breast cancer in the brain. Right: ectopic breast cancer in the skin (Photo courtesy of Nature Medicine).
Image: The new imaging tool reveals strikingly different networks of blood vessels surrounding different types of tumors in a mouse model. Left: breast cancer in the breast. Middle: metastatic breast cancer in the brain. Right: ectopic breast cancer in the skin (Photo courtesy of Nature Medicine).
Image: A tumor before (left) and five days after (right) anti-angiogenic treatment--a novel treatment approach by inhibiting blood vessel growth skin (Photo courtesy of Nature Medicine).
Image: A tumor before (left) and five days after (right) anti-angiogenic treatment--a novel treatment approach by inhibiting blood vessel growth skin (Photo courtesy of Nature Medicine).
A group of researchers has developed a novel new optical imaging tool that enables them to look deep within tumors and reveal their inner processes, helping them to understand the slight, frequently concealed, changes to DNA, cells, proteins, and tissue that alter the body’s healthy biochemistry and cause disease.

In research that will be presented at Frontiers in Optics (FiO), the Optical Society’s (OSA) annual meeting, to be held October 6–10, 2013, in Orlando (FL, USA), Dr. Dai Fukumura and his colleagues will present new optical imaging technology designed to track the movement of molecules, cells, and fluids within tumors; study abnormalities in the blood vessel network inside them; and observe how the tumors were affected by treatments.

These techniques, created by Dr. Fukumura and his long-term collaborators at Massachusetts General Hospital (MGH; Boston, MA, USA) and Harvard Medical School (Boston, MA, USA), combine two different high-tech optical imaging methods that were personalized for the research purposed. One approach is called multiphoton laser-scanning microscopy (MPLSM), which is a sophisticated fluorescence imaging technology that is now commercially available at the high end of the microscope market. The other is called optical frequency domain imaging (OFDI), which images tissues by their light scattering characteristics. OFDI is gaining acceptance in the optical imaging field but has not yet to become commercially available, according to Dr. Fukumura. “MPLSM overcomes many of the limitations from which conventional microscopy and confocal microscopy suffer, and OFDI provides robust large volume imaging data,” Dr. Fukumura said.

At FiO 2013, Dr. Fukumura will describe how his unique technique can image tumors completely, and show detailed pictures of live tumors—images that he and colleagues call “astonishing.” He noted that while the new integrated tool would be too costly to be used for regular diagnostic purposes, it has the potential to help scientists better figure out the obscure mechanisms of human cancer and aid in drug discovery for cancer therapy. “These optical imaging approaches can provide unprecedented insights in the biology and mechanisms of cancer,” he concluded.


Related Links:
Massachusetts General Hospital
Harvard Medical School


comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.