Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Live Images of Growing Tumors Reveals Cancer’s Hidden Mechanisms

By BiotechDaily International staff writers
Posted on 25 Sep 2013
Image: The new imaging tool reveals strikingly different networks of blood vessels surrounding different types of tumors in a mouse model. Left: breast cancer in the breast. Middle: metastatic breast cancer in the brain. Right: ectopic breast cancer in the skin (Photo courtesy of Nature Medicine).
Image: The new imaging tool reveals strikingly different networks of blood vessels surrounding different types of tumors in a mouse model. Left: breast cancer in the breast. Middle: metastatic breast cancer in the brain. Right: ectopic breast cancer in the skin (Photo courtesy of Nature Medicine).
Image: A tumor before (left) and five days after (right) anti-angiogenic treatment--a novel treatment approach by inhibiting blood vessel growth skin (Photo courtesy of Nature Medicine).
Image: A tumor before (left) and five days after (right) anti-angiogenic treatment--a novel treatment approach by inhibiting blood vessel growth skin (Photo courtesy of Nature Medicine).
A group of researchers has developed a novel new optical imaging tool that enables them to look deep within tumors and reveal their inner processes, helping them to understand the slight, frequently concealed, changes to DNA, cells, proteins, and tissue that alter the body’s healthy biochemistry and cause disease.

In research that will be presented at Frontiers in Optics (FiO), the Optical Society’s (OSA) annual meeting, to be held October 6–10, 2013, in Orlando (FL, USA), Dr. Dai Fukumura and his colleagues will present new optical imaging technology designed to track the movement of molecules, cells, and fluids within tumors; study abnormalities in the blood vessel network inside them; and observe how the tumors were affected by treatments.

These techniques, created by Dr. Fukumura and his long-term collaborators at Massachusetts General Hospital (MGH; Boston, MA, USA) and Harvard Medical School (Boston, MA, USA), combine two different high-tech optical imaging methods that were personalized for the research purposed. One approach is called multiphoton laser-scanning microscopy (MPLSM), which is a sophisticated fluorescence imaging technology that is now commercially available at the high end of the microscope market. The other is called optical frequency domain imaging (OFDI), which images tissues by their light scattering characteristics. OFDI is gaining acceptance in the optical imaging field but has not yet to become commercially available, according to Dr. Fukumura. “MPLSM overcomes many of the limitations from which conventional microscopy and confocal microscopy suffer, and OFDI provides robust large volume imaging data,” Dr. Fukumura said.

At FiO 2013, Dr. Fukumura will describe how his unique technique can image tumors completely, and show detailed pictures of live tumors—images that he and colleagues call “astonishing.” He noted that while the new integrated tool would be too costly to be used for regular diagnostic purposes, it has the potential to help scientists better figure out the obscure mechanisms of human cancer and aid in drug discovery for cancer therapy. “These optical imaging approaches can provide unprecedented insights in the biology and mechanisms of cancer,” he concluded.


Related Links:
Massachusetts General Hospital
Harvard Medical School


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Scanning electron micrograph of cultured human neuron from induced pluripotent stem cell (Photo courtesy of the University of California, San Diego).

Induced Stem Cells Show Genetic Abnormalities Not Found in Embryonic Stem Cells

All stem cells are not created equal: genomic evaluation revealed that the genome of stem cells generated from adult cells (induced pluripotent stem cells or iPS cells) differed considerably from that... Read more

Drug Discovery

view channel
Image: A mouse mammary gland missing the tumor-suppressor p53 shows expression of ARF (green), now known for a backup role in protecting cells from becoming cancerous. If both p53 and ARF are mutated, the tumors that form are aggressive and may benefit from treatment with anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis (Photo courtesy of Raleigh Kladney).

Anti-Inflammatory Drugs May Treat Some Aggressive Rumors

New research raises the possibility that some cancer patients with aggressive tumors may benefit from a class of anti-inflammatory drugs used to treat rheumatoid arthritis. By studying triple-negative... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.