Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Terahertz Pulses Simultaneously Kills Skin Tissue, Increases Tumor-Suppressing Proteins

By BiotechDaily International staff writers
Posted on 01 Apr 2013
Terahertz (THz) radiation, a sliver of the electromagnetic spectrum that lies in the middle region between microwaves and infrared light, is providing significant benefits in medical diagnostics and scientific research.

As scientists and engineers find more real-world uses for this type of radiation, however, questions remain about its potential human health risks. New research performed on lab-grown human skin suggests that short but powerful bursts of THz radiation may both cause DNA damage and increase the production of proteins that help the body fight cancer. The findings, which are the result of a collaboration between physicists at the University of Alberta (Edmonton, Canada) and molecular biologists at the University of Lethbridge (Lethbridge, Canada) was published March 18, 2013, in the Optical Society’s (OSA) open-access journal Biomedical Optics Express.

“While these investigations of the biological effects of intense THz pulses are only just beginning,” said Dr. Lyubov Titova, with the University of Alberta and a member of the research team, “the fact that intense THz pulses can induce DNA damage but also DNA repair mechanisms in human skin tissue suggests that intense THz pulses need to be evaluated for possible therapeutic applications.”

THz photons, similar to their longer wavelength cousins in the microwave range, are not strong enough to disrupt the chemical ties that bind DNA together in the nucleus of cells. These waves, however, have just the right frequency to galvanize water molecules, causing them to vibrate and generate heat, which is why microwave ovens are so effective at cooking food. For this reason, it was believed that heat-related injuries were the primary risks posed by THz radiation exposure.

Recent theoretic studies, however, suggest that intense THz pulses of picosecond (one trillionth of a second) duration may directly affect DNA by amplifying natural vibrations (so-called “breathing” mode) of the hydrogen bonds that bind together the two strands of DNA. As a result, “bubbles” (openings in DNA strands) can form. According to the researchers, this brought up the question if intense THz pulses can destabilize DNA structure enough to cause DNA strand breaks.

As shown in earlier animal cell culture studies, THz exposure may indeed affect biologic function under specific conditions such as high power and extended exposure. There is, however, a huge gap between animal research and conclusions that can be drawn about human health.

In a first of its kind study, the Canadian researchers exposed laboratory-grown human skin tissue to intense pulses of THz electromagnetic radiation and have detected the telltale signs of DNA damage through a chemical marker known as phosphorylated H2AX. At the same time, they observed THz-pulse induced increases in the levels of multiple tumor-suppressor and cell-cycle regulatory proteins that facilitate DNA repair. This may suggest that DNA damage in human skin arising from intense picosecond THz pulse exposure could be quickly and effectively repaired, therefore lessening the risk of carcinogenesis.

The researchers used a skin tissue model made of healthy, human-derived epidermal and dermal cells. This tissue is able to undergo mitosis and is metabolically active, thus providing a suitable platform for assessing the effects of exposure to high intensity THz pulses on human skin. For their study, Dr. Titova and her colleagues exposed the skin tissue to picosecond bursts of THz radiation at levels far above what would typically be used in current real-world applications. They then examined the sample for the presence of phosphorylated H2AX, which “flags” the DNA double-strand break site and attracts cellular DNA repair machinery to it.

“The increase in the amount of phosphorylated H2AX in tissues exposed to intense THz pulses compared to unexposed controls indicated that DNA double strand breaks were indeed induced by intense THz pulses,” noted Dr. Titova. Once DNA breaks occur, they can ultimately lead to tumors if unrepaired. “This process,” she continued, “is very slow and cells have evolved many effective mechanisms to recognize damage, pause cell cycle to allow time for damage to be repaired, and—in case repair is unsuccessful—to prevent damage accumulation by inducing apoptosis, or programmed cell death of the affected cell.”

The researchers validated that these cellular repair mechanisms were taking place by detecting an elevated presence of multiple proteins that play vital roles in DNA repair, including protein p53 (frequently called “a guardian of the genome”); p21, which works to stop cell division to allow time for repair; protein Ku70, which helps reconnect the broken DNA strands; and several other important cell proteins with known tumor-suppressor roles. These observations indicate that exposure to intense THz pulses activates cellular processes that repair DNA damage. However, the researchers noted, it is too soon to make forecasts on the long-term implications of exposure.

“In our study we only looked at one moment in time—30 minutes after exposure,” Dr. Titova said. “In the future, we plan to study how all the observed effects change with time after exposure, which should allow us to establish how quickly any induced damage is repaired.”

The Canadian researchers hope to study the potential therapeutic effects of intense THz radiation exposure to see if directed treatment with intense THz pulses can become a new approach to combat cancer.

Related Links:

University of Alberta
University of Lethbridge



Channels

Genomics/Proteomics

view channel
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).

Prevention of ERK Nuclear Translocation Blocks Cancer Proliferation in Animal Models

A team of cell biologists has shown that the cancer promoting effects of ERK dysregulation can be blocked by low molecular weight drugs that prevent translocation of this kinase from the cells' cytoplasm... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.