Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Automated Liquid Handling Platforms Boost Productivity of Synthetic Biology Researchers

By BiotechDaily International staff writers
Posted on 21 Feb 2013
Image: The Freedom EVO workstation (Photo courtesy of Tecan).
Image: The Freedom EVO workstation (Photo courtesy of Tecan).
Use of automated robotic liquid handling workstations is giving a dramatic push to development efforts in the exciting new field of synthetic biology.

Synthetic biology is the design and construction of new biological entities such as enzymes, genetic circuits, and cells, or the redesign of existing biological systems. Synthetic biology builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing.

The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components (parts of enzymes, genetic circuits, metabolic pathways, etc.) that can be modeled, understood, and tuned to meet specific performance criteria, and the assembly of these smaller parts and devices into larger integrated systems that solve specific problems. Just as engineers now design integrated circuits based on the known physical properties of materials and then fabricate functioning circuits and entire processors (with relatively high reliability), synthetic biologists will soon design and build engineered biological systems. Unlike many other areas of engineering, biology is nonlinear and less predictable, and there is less knowledge of the parts and how they interact. Hence, the overwhelming physical details of natural biology (gene sequences, protein properties, biological systems) must be organized and recast via a set of design rules that hide information and manage complexity, thereby enabling the engineering of many-component integrated biological systems. It is only when this is accomplished that designs of significant scale will be possible.

Synthetic biologists at the Massachusetts Institute of Technology (Cambridge) have adapted a Tecan (Männedorf, Switzerland) Freedom EVO workstation to help them in the development of genetic circuits. By automating laborious liquid handling protocols, the platform has increased throughput from just a few samples to hundreds of experiments a day.

The Tecan Freedom EVO series offers worktables with building-block modularity that ensures precision, reliable liquid handling, and easy-to-use robotics. Each platform can be combined with a wide choice of robotic arms, liquid handling tools, and application options powered by straightforward software that can be programmed to meet the needs of each individual laboratory. The EVO platform allows a choice of pipetting technologies on the same platform, including the possibility of combining both air and liquid displacement on a single workstation.

"We specifically chose a Tecan system for this application because the software and hardware are easy to extend, and we wanted the flexibility to experiment with different combinations of modules," said Dr. Jonathan Babb, a post-doctoral researcher at the Massachusetts Institute of Technology. "The Freedom EVOware software has an open architecture, making it easy to write and develop scripts and connect the instrument to our own systems and software, and the design of the hardware undoubtedly helps with the integration of our own modules and apparatus onto the worktable. For example, we wanted to be able to store enzymes at -20 degrees Celsius on the deck, and were able to get an automation-friendly chiller that could do this at fairly low cost, without having to make any major modifications to the platform. We have also been able to devise our own colony picking procedures for cell-based screening, and to set up and run an ordinary, low-cost gel station on the platform. The Freedom EVO is able to automatically load and run gels on the gel station, despite the lack of a communication port on this device, eliminating the need for a lot of expensive additional hardware. The flexibility and programmability of the Freedom EVO are invaluable for this, allowing us to rapidly develop in-house solutions and create the elaborate algorithms that are required to perform the many different steps that are necessary for the assembly of genetic circuits. We have successfully demonstrated that every step in the process can be automated and run completely unattended, and are now scaling up to high throughput mode, which will see multiple 96-well plates processed per day."

Related Links:
Massachusetts Institute of Technology
Tecan



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.