We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Software Visualizes Viruses and Bacteria in 3-D

By LabMedica International staff writers
Posted on 10 Dec 2014
Print article
Image: cellPACK software can generate models of midsized structures, such as this one of HIV (Photo courtesy of Scripps Research Institute).
Image: cellPACK software can generate models of midsized structures, such as this one of HIV (Photo courtesy of Scripps Research Institute).
Researchers can now study bacteria, viruses, and the inner workings of the human body with more clarity than ever before with a new software tool.

In a study published online, ahead of print, in Nature Methods on December 1, 2014, researchers from the Scripps Research Institute (TSRI; La Jolla, CA, USA) demonstrated how the software, cellPACK, can be used to model viruses such as HIV. “We hope to ultimately increase scientists’ ability to target any disease,” said Art Olson, professor at TSRI who is senior author of the new study.

The cellPACK software answers a major hurdle in structural biology. Although scientists have developed techniques to study comparatively large structures, such as cells, and very small structures, such as proteins, it has been harder to visualize structures in the medium “mesoscale” range.

With cellPACK, researchers can quickly and efficiently process the data they have gathered on smaller structures to construct models in this mid-size range. Earlier, researchers had to create these models by hand, which took weeks or months compared with just hours in cellPACK.

As a demonstration of the software’s power, the researchers of the new study created a model of HIV revealing how outer “spike” proteins are dispersed on the surface of the immature virus. The new model put to the test a conclusion made by HIV researchers from super-resolution microscopic studies—that the distribution of the spike proteins on the surface of the immature virus is random. But by using cellPACK to generate thousands of models, testing other hypotheses, the researchers discovered that the distribution was not random. “We demonstrated that their interpretation of the distribution did not match that hypothesis,” said Dr. Olson.

The cellPACK software began as the thesis project of a TSRI graduate student, Graham Johnson, now a QB3 faculty fellow at the University of California, San Francisco (UCSF) who continues to contribute to the project. Mr. Johnson had more 15 years’ experience as a medical illustrator, and he wanted to create an easy way to visualize mesoscale structures. cellPACK is an expansion of Mr. Johnson’s autoPACK software, which maps out the density of substances—from concrete in a building to red blood cells in an artery. The researchers noted that cellPACK is a community effort, and they have made the autoPACK and cellPACK software free and open source; the software is available online (Please see related links below).

“With the creation of cellPACK, Dr. Olson and his colleagues have addressed the challenge of integrating biological data from different sources and across multiple scales into virtual models that can simulate biologically relevant molecular interactions within a cell,” said Veerasamy Ravichandran, PhD, of the US National Institutes of Health’s (NIH) National Institute of General Medical Sciences (Bethesda, MD, USA), which partially funded the research. “This user-friendly tool provides a new platform for data analysis and simulation in a collaborative manner between laboratories.”

As new information comes in from the scientific community, researchers will tweak the software so it can model new shapes. “Making it open source makes it more powerful,” said Dr. Olson. “The software right now is usable and very useful, but it’s really a tool for the future.”

The Scripps Research Institute (TSRI) is one of the world’s largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other disorders.

Related Links:

Scripps Research Institute
cellPACK software


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.