We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Insights into Evolution of Drought-Tolerance Revealed by Pineapple Genome

By LabMedica International staff writers
Posted on 01 Dec 2015
Print article
Image: Sequencing and analysis of the pineapple genome offers new insights into the evolution of plant drought-resistance, different types of photosynthesis, and circadian clock regulatory adaptations (Photo courtesy of Robert E. Paull, University of Hawaii).
Image: Sequencing and analysis of the pineapple genome offers new insights into the evolution of plant drought-resistance, different types of photosynthesis, and circadian clock regulatory adaptations (Photo courtesy of Robert E. Paull, University of Hawaii).
Upon sequencing its genome, scientists begin to home in on genes and pathways that enable the pineapple plant to thrive in water-limited environments and open a new window on CAM photosynthesis, circadian rhythms, and the complicated evolutionary history of cultivated grasses like sorghum and rice, which share a distant ancestor with pineapple.

In an international collaboration of several institutions, a team led by Plant Biology Professor Ray Ming, University of Illinois at Urbana-Champaign (Champaign, IL, USA has provided a first analysis of the drought-tolerant pineapple genome upon sequencing the genomes of the cultivated Ananas comosus (L.) Merr. and its wild type relative Ananas bracteatus. Pineapple is a most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency. Humans have cultivated pineapple for over 6,000 years, beginning in present-day southwest Brazil and northeast Paraguay. Today, over 85 countries produce about 25 million metric tons annually.

Like many plants, the ancestors of pineapple and grasses experienced multiple doublings of their genomes. Tracking the remnants of these whole-genome duplications (WGDs) in different species helps trace shared and independent evolutionary histories. "Our analysis indicates that the pineapple genome has one fewer WGD than the grasses that share an ancestor with pineapple, making pineapple the best comparison group for the study of cereal crop genomes," said Prof. Ming. The study uncovered evidence of 2 WGDs in the pineapple's history and validated previous findings of 3 WGDs in grasses.

Althought most crop plants use the C3 type of photosynthesis, many plant species use the specialized CAM type. "CAM plants use only 20% of the water used by typical C3 crop plants, and CAM plants can grow in dry, marginal lands that are unsuited for most crop plants," said Prof. Ming. "Drought is responsible for the majority of global crop loss, so understanding the mechanisms that plants have evolved to survive water stress is vital for engineering drought tolerance in crop species," the researchers wrote.

CAM and C4 photosynthesis, which is common among grasses, use many of the same enzymes to concentrate carbon dioxide in plant leaves. Other plants, such as soybeans, use the less efficient C3 photosynthesis, which lacks the CO2-concentrating mechanisms of C4 and CAM. Understanding the evolution itself is also important and the team discovered that CAM photosynthesis evolved by reconfiguring molecular pathways involved in C3 photosynthesis. "All plants contain the necessary genes for CAM photosynthesis, and the evolution of CAM simply requires rerouting of preexisting pathways," they wrote.

Analysis of the pineapple genome further revealed that some genes that contribute to CAM photosynthesis are regulated by circadian clock genes. "This is the first time scientists have found a link between regulatory elements of CAM photosynthesis genes and circadian clock regulation," said Prof. Ming, "This makes sense, because CAM photosynthesis allows plants to close the pores in their leaves during the day and open them at night. This contributes to pineapple's resilience in hot, arid climates, as the plant loses very little moisture through its leaves during the day." CAM photosynthesis allows the plant to absorb and "fix CO2 into molecules during the night, concentrate it in its leaves, and release it the next day for photosynthesis," he added.

The study, by Ming R. et al., was published online ahead of print November 2, 2015, in the journal Nature Genetics.

Related Links:

University of Illinois at Urbana-Champaign


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.