We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoparticle-Augmented Spectroscopy Reveals Structure of Alzheimer's Disease Peptide

By LabMedica International staff writers
Posted on 06 Sep 2015
Print article
Image: Toxic Alzheimer\'s amyloid beta molecules landing on a fake cell membrane, wrapped around a silver nanoparticle. A laser, with help from the silver particle, lights up the molecule to reveal its structure (Photo courtesy of Dr. Debanjan Bhowmik, Tata Institute of Fundamental Research).
Image: Toxic Alzheimer\'s amyloid beta molecules landing on a fake cell membrane, wrapped around a silver nanoparticle. A laser, with help from the silver particle, lights up the molecule to reveal its structure (Photo courtesy of Dr. Debanjan Bhowmik, Tata Institute of Fundamental Research).
The use of lipid bilayer-encapsulated silver nanoparticles to increase the sensitivity of a Raman spectroscopy technique allowed researchers to determine the structure of Alzheimer's disease-related membrane-attached oligomers of amyloid-beta40 (Abeta40) peptide.

Raman spectroscopy exploits the inelastic scattering (so-called “Raman” scattering) phenomena to detect spectral signatures of important disease progression biomarkers, including lipids, proteins, and amino acids. In a novel modification of the Raman technique, investigators at the Tata Institute of Fundamental Research (Mumbai, India) and the University of Toronto (Canada) introduced a surface enhanced Raman spectroscopy technique that could determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, this approach did not require immobilization of molecules, as it used spontaneous binding of proteins to lipid bilayer-encapsulated silver nanoparticles.

The investigators applied this technique to probe the structure of membrane-attached oligomers of amyloid-beta40 (Abeta40), whose conformation is needed to explain certain aspects of Alzheimer’s disease.

They reported in the August 25, 2015, online edition of the journal ACS Nano that isotope-shifts in the Raman spectra helped them to obtain secondary structure information at the level of individual residues. Results showed the presence of a beta-turn, flanked by two beta-sheet regions. The investigators then used solid-state NMR data to confirm the presence of the beta-sheets in these regions. In the membrane-attached oligomer, they found a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic Abeta fibrils.

Contributing author Dr. Gilbert Walker, professor of chemistry at the University of Toronto, said, "While the amyloid beta got fooled by the fat layer-encased silver nanoparticles that mimicked the outer membranes of living cells and stuck to the membrane, the silver inside enhanced the signal to a measurable level and acted as a light beacon to reveal the peptide signature."

"Everybody wants to make the key to solve Alzheimer's disease, but we do not know what the lock looks like. We now have a glimpse of something which could be the lock. May be it is still not the real thing, but as of now, this is our best bet," said senior author Dr. Sudipta Maiti, professor of chemical sciences at the Tata Institute of Fundamental Research.

Related Links:

Tata Institute of Fundamental Research
University of Toronto


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ASTar System has received US FDA 510(k) clearance (Photo courtesy of Q-linea AB)

Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections

Sepsis affects up to 50 million people globally each year, with bacteraemia, formerly known as blood poisoning, being a major cause. In the United States alone, approximately two million individuals are... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.