We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Essential Processes of Life in the Genome Imaged

By LabMedica International staff writers
Posted on 11 Nov 2014
Print article
Image: Cells with damage in their DNA (green) assemble abnormally stable microtubule structures (purple to white). This new link between microtubule control and the response to DNA damage, originally discovered in yeast, can be observed also in human cells (shown) (Photo courtesy of L. Wagstaff, E. Piddini).
Image: Cells with damage in their DNA (green) assemble abnormally stable microtubule structures (purple to white). This new link between microtubule control and the response to DNA damage, originally discovered in yeast, can be observed also in human cells (shown) (Photo courtesy of L. Wagstaff, E. Piddini).
A new study has allowed researchers to glimpse into never-before-seen regions of the genome and better determine for the first time the role played by more than 250 genes key to cell growth and development.

The team of researchers, led by Dr. Rafael Carazo Salas from the department of genetics at the University of Cambridge (UK) combined high-resolution, three-dimensional (3-D) confocal microscopy and computer-automated analysis of the images to survey the fission yeast genome with respect to three major cellular processes simultaneously: cell shape, microtubule organization and cell cycle progression.

Of the 262 genes whose functions the team report in a study published October 27, 2014, in the journal Developmental Cell, two-thirds are linked to these processes for the first time and a third are implicated in multiple processes. “More than 10 years since the publication of the human genome, the so-called ‘Book of Life,’ we still have no direct evidence of the function played by half the genes across all species whose genomes have been sequenced,” explained Dr. Carazo Salas. “We have no ‘catalogue’ of genes involved in cellular processes and their functions, yet these processes are fundamental to life. Understanding them better could eventually open up new avenues of research for medicines which target these processes, such as chemotherapy drugs.”

Using a multidisciplinary approach that took the scientists over four years to develop, the researchers were able to manipulate a single gene at a time in the fission yeast genome and see simultaneously how this affected the three cellular processes. Fission yeast is used as a model organism as it is a unicellular organism—in other words, it consists of just one cell—whereas most organisms are multicellular, yet many of its most fundamental genes carry out the same function in humans, for example in cell development.

The technique enabled the researchers not only to identify the functions of hundreds of genes across the genome, but also, for the first time, to systematically ask how the processes might be linked. For example, they found in the yeast—and significantly, confirmed in human cell studies—an unknown association between control of microtubule stability and the machinery that repairs damage to DNA. Many conventional cancer therapies target microtubular stability or DNA damage, and while there is evidence in the scientific literature that agents targeting both processes might interact, the reason why is still undetermined.

“Both the technique and the data it produces are likely to be a very valuable resource to the scientific community in the future,” added Dr. Carazo Salas. “It allows us to shine a light into the black box of the genome and learn exciting new information about the basic building blocks of life and the complex ways in which they interact.”

Related Links:

University of Cambridge


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.