Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Crystal Structures Define Mode of Action of Bacteriophage Endolysins

By BiotechDaily International staff writers
Posted on 13 Aug 2014
Print article
Image: Electron microscopy image of the bacteriophages investigated (Photo courtesy of the European Molecular Biology Laboratory).
Image: Electron microscopy image of the bacteriophages investigated (Photo courtesy of the European Molecular Biology Laboratory).
Image: The analyzed endolysins are activated by switching from a tensed, stretched state (left) to a relaxed state (right) (Photo courtesy of the European Molecular Biology Laboratory).
Image: The analyzed endolysins are activated by switching from a tensed, stretched state (left) to a relaxed state (right) (Photo courtesy of the European Molecular Biology Laboratory).
New antibacterial agents based on bacteriophages or their endolysin enzymes have been proposed to solve the problem of the bacterium Clostridium difficile, which is becoming a serious health hazard in hospitals and healthcare institutes, due to its resistance to antibiotics.

Investigators at the European Molecular Biology Laboratory (Hamburg, Germany) based their research primarily on the bacteriophage CD27, which is capable of lysing C. difficile. In addition, they worked with a recombinant form of the CD27L endolysin, which lyses C. difficile in vitro.

To better understand how the lysis process works, the investigators determined the three-dimensional structures of the CD27L endolysin and the CTP1L endolysin from the closely related bacteriophage CPT1 that targets C. tyrobutyricum. For this task they employed X-ray crystallography and small angle X-ray scattering (SAXS), which was done at the Deutsches Elektronen-Synchrotron (DESY).

Results published in the July 24, 2014, online edition of the journal PLOS Pathogens revealed that the two endolysins shared a common activation mechanism, despite having been taken from different species of Clostridium. The activation mechanism depended on a structure where an extended dimer existed in the inactive state but switched to a side-by-side "relaxed" morphology in the active state, which triggered the cleavage of the C-terminal domain. This change of morphology led to the release of the catalytic portion of the endolysin, enabling the efficient digestion of the bacterial cell wall.

“These enzymes appear to switch from a tense, elongated shape, where a pair of endolysins is joined together, to a relaxed state where the two endolysins lie side-by-side,” said first author Dr. Matthew Dunne, a researcher at the European Molecular Biology Laboratory. “The switch from one conformation to the other releases the active enzyme, which then begins to degrade the cell wall.”

Related Links:

European Molecular Biology Laboratory



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.