Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Factors in the Tumor Microenvironment Promote Cancer Growth and Metastasis

By BiotechDaily International staff writers
Posted on 13 Aug 2014
Cancer researchers have found that procancerous HSF1 (Heat shock factor 1) drives a transcriptional program in cancer-associated fibroblasts (CAFs) that complements, yet is completely different from, the program it drives in adjacent cancer cells.

Stromal cells within the tumor microenvironment are essential for tumor progression and metastasis, but little is known about the factors that drive the transcriptional reprogramming of stromal cells within tumors. Investigators at the Whitehead Institute for Biomedical Research (Cambridge, MA, USA) recently reported that the transcriptional regulator heat shock factor 1 (HSF1) was frequently activated in cancer-associated fibroblasts (CAFs), where it was a potent enabler of malignancy. HSF1 activity was found in a variety of human tumors, including breast, lung, skin, esophageal, colon, and prostate cancers.

HSF1 is the major regulator of heat shock protein transcription in eukaryotes. In the absence of cellular stress, HSF1 is inhibited by association with the heat shock proteins Hsp40/Hsp70 and Hsp90 and is therefore not active. Cellular stresses, such as increased temperature, can cause misfolding of proteins in the cell. Heat shock proteins bind to the misfolded proteins and dissociate from HSF1. This allows HSF1 to form trimers and translocate to the cell nucleus where it is hyperphosphorylated, binds to DNA containing heat shock elements, and activates transcription.

The investigators reported in the July 31, 2014, issue of the journal Cell that analysis of tumor samples from breast cancer and non-small-cell lung cancer patients revealed that HSF1 activation in the stroma was associated with poor patient outcomes, including reduced disease-free survival and overall survival. Thus, stromal HSF1 is considered to be a possible biomarker for cancer diagnosis and prognosis as well as a potential drug target.

“This is actually a beautiful example of evolution,” said Dr. Ruth Scherz-Shouval, a postdoctoral researcher at the Whitehead Institute for Biomedical Research. “It is recognizing that the tumor is like an organism that adheres to evolutionary principles. HSF1 has been highly conserved over time, supporting the survival of organisms ranging from yeast to human, so it makes sense that it is coopted here. Both cancer cells and the microenvironment are sensing changes in the tumor and responding, signaling to one another to help the “organism,” albeit to the detriment of the host. These are different programs, but they are both controlled by HSF1 and serve the same purpose.”

“It is important to find HSF1 operating this way in the stroma,” said Dr. Scherz-Shouval. “The tumor microenvironment tends to be more genetically stable and less prone to mutation, suggesting that even if cancer cells could mutate to evade therapeutic disruption of HSF1, supportive cells in the stroma could still be susceptible.”

Related Links:

Whitehead Institute for Biomedical Research



BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).

Turning Antibodies into Precisely Tuned Nanobodies

New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research. Antibodies control the process of recognizing and zooming in on molecular... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.