Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Gene Variations Can Predict Radiation-Induced Toxicity Risk

By BiotechDaily International staff writers
Posted on 04 Aug 2014
Print article
Key genetic variants may affect how cancer patients respond to radiation treatments, according to new research. Scientists discovered that differences in the TANC1 (tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1) gene are associated with a greater risk for radiation-fueled side effects in prostate cancer patients, which include impotence, diarrhea, and incontinence.

These findings, published July 2014 in Nature Genetics, are based on a genome-wide association study, a type of study in which researchers studied a variety of genetic variants to see if any of them are tied to a specific type of complication, which could sometimes appear years after treatment was completed.

“Our findings, which were replicated in two additional patient groups, represent a significant step towards developing personalized treatment plans for prostate cancer patients,” said Barry S. Rosenstein, PhD, professor, radiation oncology, genetics and genomic sciences, Icahn School of Medicine at Mount Sinai (New York, NY, USA), the lead Mount Sinai investigator on the study. “Within five years, through the use of a predictive genomic test that will be created using the data obtained in the recent study, it may be possible to optimize treatment for a large number of cancer patients.”

For the study, Dr. Rosenstein and his colleagues obtained blood samples from nearly 400 patients who were receiving radiotherapy treatment for prostate cancer. The blood samples were screened for roughly one million genetic markers, and each patient was monitored for at least two years to monitor incidents of side effects from the radiation. Data analysis revealed which genetic markers were consistently associated with the development of complications following radiotherapy.

“The next step is to validate the results, and see if the same markers predict similar outcomes in patients with other forms of cancer,” said Dr. Rosenstein. Using the genomic test being developed, treatment plans can be adjusted to curtail adverse effects thereby allowing for an improved quality life for many cancer survivors.

Related Links:

Icahn School of Medicine at Mount Sinai



Print article

Channels

Genomics/Proteomics

view channel
Image: A confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red (Photo courtesy of Dr. Shoukhrat Mitalipov, Oregon Health & Science University).

Stem Cells Derived from Older Individuals May Carry Unsafe Mitochondrial DNA Mutations

Induced pluripotent stem cells (iPSCs) derived from the skin fibroblasts of older individuals have a likelihood of harboring mitochondrial DNA mutations, which may render them unfit for clinical applications.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.