Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Advanced Electron Microscopy Reveals Fine Structure of Active Signaling Complexes

By BiotechDaily International staff writers
Posted on 07 Jul 2014
Image: A structural model of the beta2 adrenergic receptor-arrestin signaling complex as deduced by electron microscopy, cross-linking, and mass spectrometry (Photo courtesy of Duke University).
Image: A structural model of the beta2 adrenergic receptor-arrestin signaling complex as deduced by electron microscopy, cross-linking, and mass spectrometry (Photo courtesy of Duke University).
A team of molecular biologists used advanced electron microscopy and mass spectroscopy techniques to determine the structure of the functional human beta2AR (beta2 adrenergic receptor)-beta-arrestin-1 signaling complex.

Members of arrestin/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of G-protein-coupled receptors (GPCRs) and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals.

While a recent barrage of structural data on a number of GPCRs including the beta2AR–G-protein complex has provided novel insights into the structural basis of receptor activation, information has been lacking on the recruitment of beta-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor–beta-arrestin complexes for structural studies.

Investigators at Duke University (Durham, NC, USA) and colleagues at the University of Michigan (Ann Arbor, USA) and Stanford University (Palo Alto, CA, USA) devised a strategy for forming and purifying a functional human beta2AR–beta-arrestin-1 complex that allowed them to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between beta2AR and beta-arrestin 1 using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and chemical cross linking.

Electron microscopy two-dimensional averages and three-dimensional reconstructions revealed bimodal binding of beta-arrestin 1 to the beta2AR, involving two separate sets of interactions, one with the phosphorylated carboxyl terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross linked residues suggested engagement of the finger loop of beta-arrestin 1 with the seven-transmembrane core of the receptor.

A molecular model of the beta2AR–beta-arrestin signaling complex was made by docking activated beta-arrestin and beta2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and cross linking. This model, which was published in the June 22, 2014, edition of the journal Nature, provided valuable insights into the overall architecture of a receptor–arrestin complex.

“Arrestin’s primary role is to put the cap on GPCR signaling. Elucidating the structure of this complex is crucial for understanding how the receptors are desensitized in order to prevent aberrant signaling,” said co-senior author Dr. Georgios Skiniotis, professor of life sciences at the University of Michigan.

Related Links:

Duke University
University of Michigan
Stanford University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.