We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Rac1 Levels Linked to Mechanics of Invadopodia Formation and Metastasis

By LabMedica International staff writers
Posted on 09 Jun 2014
Print article
Image: Electron micrograph shows a cancer cell (upper darker area) that has formed three invadopodia that are penetrating the adjacent extracellular matrix (lower lighter area) (Photo courtesy of Yeshiva University).
Image: Electron micrograph shows a cancer cell (upper darker area) that has formed three invadopodia that are penetrating the adjacent extracellular matrix (lower lighter area) (Photo courtesy of Yeshiva University).
Cancer researchers have linked increases and decreases in the level of Rac1 protein to the appearance and disappearance of invadopodia, amoeboid-like protrusions used by metastatic cancer cells to invade neighboring tissues.

Invadopodia release enzymes that degrade the extracellular matrix (ECM) and allow cellular movement while propelling the cancer cell into neighboring tissues.

Rac1, also known as Ras-related C3 botulinum toxin substrate 1, is a protein encoded by the RAC1 gene. This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions. Rac1 is thought to play a significant role in the development of various cancers, including melanoma and non-small-cell lung cancer. As a result, it is now considered a therapeutic target for these diseases. Rac1 is a small (approximately 21 kDa) signaling G-protein (more specifically a GTPase), and is a regulator of many cellular processes, including the cell cycle, cell-cell adhesion, motility (through the actin network), and of epithelial differentiation (proposed to be necessary for maintaining epidermal stem cells).

To study Rac1 involvement in invadopodia dynamics, investigators at Yeshiva University (New York, NY, USA) developed a genetically encoded, single-chain Rac1 fluorescence resonance energy (FRET) transfer biosensor technique that, combined with live-cell imaging, revealed exactly when and where Rac1 was activated inside cancer cells.

Results obtained by this methodology revealed that low levels of Rac1 were found during formation of invadopodia and while they were actively degrading the ECM. Elevated Rac1 levels coincided with disappearance of the invadopodia. These findings were confirmed by using siRNAs to silence the RAC1 gene. When the gene was inactivated, ECM degradation increased. Conversely, when Rac1 activity was enhanced - using light to activate a Rac1 protein analog - the invadopodia disappeared.

“We have known for some time that invadopodia are driven by protein filaments called actin,” said senior author Dr. Louis Hodgson, assistant professor of anatomy and structural biology at Yeshiva University. “But exactly what was regulating the actin in invadopodia was not clear. Rac1 levels in invadopodia of invasive tumor cells appear to surge and ebb at precisely timed intervals in order to maximize the cells’ invasive capabilities. So high levels of Rac1 induce the disappearance of ECM-degrading invadopodia, while low levels allow them to stay—which is the complete opposite of what Rac1 was thought to be doing in invadopodia.”

“Rac1 inhibitors have been developed,” said Dr. Hodgson, “but it would not be safe to use them indiscriminately. Rac1 is an important molecule in healthy cells, including immune cells. So we would need to find a way to shut off this signaling pathway specifically in cancer cells.”

Related Links:

Yeshiva University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.