Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Area of Noncoding DNA Regulates Activity of Heartbeat Control Protein

By BiotechDaily International staff writers
Posted on 09 Jun 2014
Image: Normal ECG/EKG complex with labels (Photo courtesy of Wikimedia Commons).
Image: Normal ECG/EKG complex with labels (Photo courtesy of Wikimedia Commons).
Variants in a stretch of DNA not used by the genome for coding proteins have been linked to changes in the way the heart beats and may be linked to the risk of sudden cardiac death.

In cardiology, the QT interval is a measure of the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle. The QT interval represents electrical depolarization and repolarization of the ventricles. A lengthened QT interval is a marker for the potential of ventricular tachyarrhythmias and a risk factor for sudden death.

Previous studies have associated the gene NOS1AP (nitric oxide synthase 1 adaptor protein) and NOS1AP polymorphisms with the QT interval length. Investigators at Johns Hopkins University (Baltimore, MD, USA) continued research in this area by employing multiple human genetic and molecular genetic assays as well as cellular assays using genetically engineered rat cardiomyocytes to look at the relationship between gene expression and QT interval length.

They reported in the May 22, 2014, online edition of the American Journal of Human Genetics that they were able to identify a functional variant underlying trait association: a noncoding polymorphism that mapped within an enhancer of NOS1AP and affected cardiac function by increasing NOS1AP transcript expression. They further localized NOS1AP to cardiomyocyte intercalated discs (IDs) and demonstrated that overexpression of NOS1AP in cardiomyocytes led to altered cellular electrophysiology.

“Traditionally, geneticists have studied gene variants that cause disease by producing an abnormal protein,” said senior author Dr. Aravinda Chakravarti, professor of medicine, pediatrics, molecular biology, genetics, and biostatistics at the Johns Hopkins University. “We think there will turn out to be many DNA variants that, like this one, cause disease by making too much or too little of a normal protein. The problem is that most of these variants lie outside of genes, in the noncoding DNA that controls how genes are used, so it is hard to tell what genes they are affecting.”

“Hundreds of genome-wide association studies have been done to find genetic variants associated with disease, but this is one of just a handful of follow-up studies to look for the mechanism behind such a variant,” said Dr. Chakravarti. “I think we have shown there is great value in asking why.”

Related Links:

Johns Hopkins University



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.