Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Novel Approach Simplifies Complex Sugars on Protein-Based Biotech Medicines

By BiotechDaily International staff writers
Posted on 25 May 2014
A team of biotech medicine developers has established a cell-based production method that reduces the complexity of the sugars (glycans) expressed on protein-based drugs.

Heterogeneity in the N-glycans on therapeutic proteins causes difficulties for protein purification and process reproducibility and can lead to variable therapeutic efficacy. This heterogeneity arises from the multistep process of mammalian complex-type N-glycan synthesis.

Investigators at, Ghent University (Belgium) recently described a novel glycoengineering strategy that they called GlycoDelete, which used a fungal enzyme to shorten the Golgi N-glycosylation pathway in mammalian cells.

They wrote in the April 20, 2014, online edition of the journal Nature Biotechnology that this shortening resulted in the expression of proteins with small, sialylated trisaccharide N-glycans and reduced complexity compared to native mammalian cell glycoproteins. GlycoDelete engineering did not interfere with the functioning of N-glycans in protein folding, and the physiology of cells modified by GlycoDelete was similar to that of wild-type cells. This strategy for reducing N-glycan heterogeneity on mammalian proteins could lead to more consistent performance of therapeutic proteins and modulation of biopharmaceutical functions.

Senior author Dr. Nico Callewaert, professor of medical biotechnology at Ghent University, said, “This technology has allowed us to solve an old biotech problem. Since the 1990s, nearly everyone has been working to make the sugar synthesis in biotech production cells as similar to human cells as possible. This is a very difficult task, because there are so many steps in this synthesis pathway. We have been able to create a detour in this synthesis pathway in a fairly simple manner, making the pathway much shorter and simpler.”

Related Links:

Ghent University



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.