Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Novel Approach Simplifies Complex Sugars on Protein-Based Biotech Medicines

By BiotechDaily International staff writers
Posted on 25 May 2014
A team of biotech medicine developers has established a cell-based production method that reduces the complexity of the sugars (glycans) expressed on protein-based drugs.

Heterogeneity in the N-glycans on therapeutic proteins causes difficulties for protein purification and process reproducibility and can lead to variable therapeutic efficacy. This heterogeneity arises from the multistep process of mammalian complex-type N-glycan synthesis.

Investigators at, Ghent University (Belgium) recently described a novel glycoengineering strategy that they called GlycoDelete, which used a fungal enzyme to shorten the Golgi N-glycosylation pathway in mammalian cells.

They wrote in the April 20, 2014, online edition of the journal Nature Biotechnology that this shortening resulted in the expression of proteins with small, sialylated trisaccharide N-glycans and reduced complexity compared to native mammalian cell glycoproteins. GlycoDelete engineering did not interfere with the functioning of N-glycans in protein folding, and the physiology of cells modified by GlycoDelete was similar to that of wild-type cells. This strategy for reducing N-glycan heterogeneity on mammalian proteins could lead to more consistent performance of therapeutic proteins and modulation of biopharmaceutical functions.

Senior author Dr. Nico Callewaert, professor of medical biotechnology at Ghent University, said, “This technology has allowed us to solve an old biotech problem. Since the 1990s, nearly everyone has been working to make the sugar synthesis in biotech production cells as similar to human cells as possible. This is a very difficult task, because there are so many steps in this synthesis pathway. We have been able to create a detour in this synthesis pathway in a fairly simple manner, making the pathway much shorter and simpler.”

Related Links:

Ghent University



view channel
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).

Alternate Splicing Proteins Critically Linked to Skin and Organ Development

Two proteins that regulate alternative splicing in epithelial cells have been linked to the proper development of the skin and protective layers that surround other organs in the body. Two steps are... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.