Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Gene Linking Intelligence to Brain Structure Identified

By BiotechDaily International staff writers
Posted on 10 Mar 2014
Print article
For the first time, British scientists have linked a gene associated with the thickness of the gray matter in the brain to intelligence. These new insights may help scientists better determine the biologic processes behind some forms of intellectual disability.

The study’s findings were published February 11, 2014, in the journal Molecular Psychiatry. The researchers, from King’s College London (UK) examined the cerebral cortex. Earlier research had shown that cortical thickness closely correlates with intellectual ability; however, at the time no genes had been identified.

An international team of scientists, led by King’s College London, analyzed DNA samples and MRI scans from 1,583 healthy 14 year old teenagers, part of the IMAGEN cohort. The teenagers also underwent a series of tests to determine their verbal and non-verbal intelligence.

Dr. Sylvane Desrivières, from the MRC (Medical Research Council) Social, Genetic, and Developmental Psychiatry Center at King’s College London’s Institute of Psychiatry, and lead author of the study, said, “We wanted to find out how structural differences in the brain relate to differences in intellectual ability. The genetic variation we identified is linked to synaptic plasticity—how neurons communicate. This may help us understand what happens at a neuronal level in certain forms of intellectual impairments, where the ability of the neurons to communicate effectively is somehow compromised. It’s important to point out that intelligence is influenced by many genetic and environmental factors. The gene we identified only explains a tiny proportion of the differences in intellectual ability, so it’s by no means a ‘gene for intelligence.’”

The researchers searched over 54,000 genetic variants that may be involved in brain development. They discovered that, on average, teenagers carrying a specific gene variant had a thinner cortex in the left cerebral hemisphere, in particular, in the frontal and temporal lobes, and performed less well on tests for intellectual ability. The genetic variation affects the expression of the NPTN gene, which encodes a protein that acts at the neuronal synapses and therefore affects how brain cells communicate.

The researchers, to validate their findings, studied the NPTN gene in mouse and human brain cells. The researchers found that the NPTN gene had a different activity in the left and right hemispheres of the brain, which may cause the left hemisphere to be more sensitive to the effects of NPTN mutations. Their findings suggest that some differences in intellectual abilities can result from the decreased function of the NPTN gene in particular regions of the left-brain hemisphere.

The genetic variation identified in this study only accounts for an estimated 0.5% of the total variation in intelligence. However, the findings may have important implications for the understanding of biologic processes underlying several psychiatric disorders, such as schizophrenia, autism, where impaired cognitive ability is a key characteristic of the disorder.

IMAGEN is a major European Commission (EU)-funded project on teenager risk taking and reinforcement-related behaviors. The project involves 2,000 14-year-old children and research teams from Ireland, England, France, and Germany. The project’s goal is to identify and learn more about biologic and environmental factors that might have an influence on normal brain function and mental health in teenagers. This data, according to the researchers, should in the future then help develop better prevention strategies and therapies.

Related Links:

King’s College London



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.