We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Study Finds Association Between Small Noncoding RNAs and Cancer

By LabMedica International staff writers
Posted on 06 Mar 2014
Print article
A team of Canadian molecular biologists has established a link between some types of small noncoding RNAs (smRNAs) and certain cancers.

SmRNAs—RNA molecules that do not give rise to proteins but which may have other important functions in the cell—have been shown to be significantly enriched near the transcriptional start sites of genes. However, the functional relevance of these smRNAs has remained unclear, and they have not been associated with human disease.

Now, in a groundbreaking study, investigators associated with The Cancer Genome Atlas Project (Bethesda, MD, USA) have found that differences in the levels of specific types of noncoding RNAs can be used to distinguish between cancerous and noncancerous tissues. The Cancer Genome Atlas Project is a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

In prior cancer studies, these RNAs had been regarded as transcriptional "noise,” due to their apparent chaotic distribution. In contrast, in a study published in the February 1, 2014, issue of the journal EMBO reports investigators at the University of British Columbia (Vancouver, Canada) demonstrated the striking potential of certain smRNAs to distinguish efficiently between cancer and normal tissues and classify patients with cancer to subgroups of distinct survival outcomes.

They stressed that this potential to predict cancer status was restricted to a subset of smRNAs, which was encoded within the first exon of genes, highly enriched within CpG islands and negatively correlated with DNA methylation levels. In a CpG island, both cytosine and the guanine are found on the same strand of DNA or RNA and are connected by a phosphodiester bond.

"For many years, small non-coding RNAs near transcriptional start sites have been regarded as "transcriptional noise" due to their apparent chaotic distribution and an inability to correlate these molecules with known functions or disease," said senior author Dr. Steven Jones, professor of molecular biology at the University of British Columbia. "By using a computational approach to analyze small RNA sequence information that we generated as part of The Cancer Genome Atlas Project, we have been able to filter through this noise to find clinically useful information."

"The data from our experiments show that genome-wide changes in the expression levels of small noncoding RNAs in the first exons of protein-coding genes are associated with breast cancer," said Dr. Jones. "This is the first time that small noncoding RNAs near the transcription start site of genes have been associated with disease. Further work is required but based on our data we believe there is considerable diagnostic potential for these small noncoding RNAs as a predictive tool for cancer. In addition, they may help us understand better the mechanisms underlying oncogenesis at the epigenetic level and lead to potential new drugs employing small noncoding RNAs."

Related Links:

The Cancer Genome Atlas Project
University of British Columbia


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.