Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
PZ HTL SA

DNA Bricks Have Potential Applications in Several Nanotech and Biotech Fields

By BiotechDaily International staff writers
Posted on 25 Dec 2013
Image: Interlocking DNA bricks create a three-dimensional molecular canvas. Each canvas is composed of many oligonucleotides, or DNA bricks, that have four consecutive eight nucleotide domains. The bricks assemble at right angles to other interlocking bricks, using standard A-T and G-C base pairing (Photo courtesy of Integrated DNA Technologies).
Image: Interlocking DNA bricks create a three-dimensional molecular canvas. Each canvas is composed of many oligonucleotides, or DNA bricks, that have four consecutive eight nucleotide domains. The bricks assemble at right angles to other interlocking bricks, using standard A-T and G-C base pairing (Photo courtesy of Integrated DNA Technologies).
Researchers have been exploiting the unique physical properties of DNA in order to develop applications not related to its role in storing genetic information.

Investigators at Harvard Medical School (Boston, MA, USA) have relied on highly purified oligonucleotides obtained from Integrated DNA Technologies (Coralville, IA, USA) to create three-dimensional DNA constructs or "bricks.” These bricks have potential applications in several different fields such as catalysts in the development of drug compounds or as elements to create electrical circuit boards on the nanometer scale.

A DNA brick is a relatively simple, single-stranded, 32-base DNA oligonucleotide construct. Each brick has four consecutive eight-base domains, and they assemble at right angles to complementary interlocking oligonucleotides guided by these eight-base domains. A computer program developed in the laboratory of Dr. Pen Yin, assistant professor of systems biology at Harvard Medical School, then "paints" the oligonucleotides onto a virtual molecular canvas that is represented as 10 x 10 x 10 cubic volumetric pixel elements or "voxels.” A three-dimensional shape is created by withholding individual voxels from the brick, and the software then determines which oligonucleotides are required to form the resulting three-dimensional canvas structure.

DNA bricks can be easily modified with other functional molecules, such as fluorophores, and can serve as a scaffold for growing other molecular matrices, such as those formed from SiO2, which have many material applications.

Related Links:

Harvard Medical School
Integrated DNA Technologies



comments powered by Disqus

Channels

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.