Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

DNA Bricks Have Potential Applications in Several Nanotech and Biotech Fields

By BiotechDaily International staff writers
Posted on 25 Dec 2013
Image: Interlocking DNA bricks create a three-dimensional molecular canvas. Each canvas is composed of many oligonucleotides, or DNA bricks, that have four consecutive eight nucleotide domains. The bricks assemble at right angles to other interlocking bricks, using standard A-T and G-C base pairing (Photo courtesy of Integrated DNA Technologies).
Image: Interlocking DNA bricks create a three-dimensional molecular canvas. Each canvas is composed of many oligonucleotides, or DNA bricks, that have four consecutive eight nucleotide domains. The bricks assemble at right angles to other interlocking bricks, using standard A-T and G-C base pairing (Photo courtesy of Integrated DNA Technologies).
Researchers have been exploiting the unique physical properties of DNA in order to develop applications not related to its role in storing genetic information.

Investigators at Harvard Medical School (Boston, MA, USA) have relied on highly purified oligonucleotides obtained from Integrated DNA Technologies (Coralville, IA, USA) to create three-dimensional DNA constructs or "bricks.” These bricks have potential applications in several different fields such as catalysts in the development of drug compounds or as elements to create electrical circuit boards on the nanometer scale.

A DNA brick is a relatively simple, single-stranded, 32-base DNA oligonucleotide construct. Each brick has four consecutive eight-base domains, and they assemble at right angles to complementary interlocking oligonucleotides guided by these eight-base domains. A computer program developed in the laboratory of Dr. Pen Yin, assistant professor of systems biology at Harvard Medical School, then "paints" the oligonucleotides onto a virtual molecular canvas that is represented as 10 x 10 x 10 cubic volumetric pixel elements or "voxels.” A three-dimensional shape is created by withholding individual voxels from the brick, and the software then determines which oligonucleotides are required to form the resulting three-dimensional canvas structure.

DNA bricks can be easily modified with other functional molecules, such as fluorophores, and can serve as a scaffold for growing other molecular matrices, such as those formed from SiO2, which have many material applications.

Related Links:

Harvard Medical School
Integrated DNA Technologies



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.