Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
PZ HTL SA
GLOBETECH PUBLISHING

DNA Bricks Have Potential Applications in Several Nanotech and Biotech Fields

By BiotechDaily International staff writers
Posted on 25 Dec 2013
Image: Interlocking DNA bricks create a three-dimensional molecular canvas. Each canvas is composed of many oligonucleotides, or DNA bricks, that have four consecutive eight nucleotide domains. The bricks assemble at right angles to other interlocking bricks, using standard A-T and G-C base pairing (Photo courtesy of Integrated DNA Technologies).
Image: Interlocking DNA bricks create a three-dimensional molecular canvas. Each canvas is composed of many oligonucleotides, or DNA bricks, that have four consecutive eight nucleotide domains. The bricks assemble at right angles to other interlocking bricks, using standard A-T and G-C base pairing (Photo courtesy of Integrated DNA Technologies).
Researchers have been exploiting the unique physical properties of DNA in order to develop applications not related to its role in storing genetic information.

Investigators at Harvard Medical School (Boston, MA, USA) have relied on highly purified oligonucleotides obtained from Integrated DNA Technologies (Coralville, IA, USA) to create three-dimensional DNA constructs or "bricks.” These bricks have potential applications in several different fields such as catalysts in the development of drug compounds or as elements to create electrical circuit boards on the nanometer scale.

A DNA brick is a relatively simple, single-stranded, 32-base DNA oligonucleotide construct. Each brick has four consecutive eight-base domains, and they assemble at right angles to complementary interlocking oligonucleotides guided by these eight-base domains. A computer program developed in the laboratory of Dr. Pen Yin, assistant professor of systems biology at Harvard Medical School, then "paints" the oligonucleotides onto a virtual molecular canvas that is represented as 10 x 10 x 10 cubic volumetric pixel elements or "voxels.” A three-dimensional shape is created by withholding individual voxels from the brick, and the software then determines which oligonucleotides are required to form the resulting three-dimensional canvas structure.

DNA bricks can be easily modified with other functional molecules, such as fluorophores, and can serve as a scaffold for growing other molecular matrices, such as those formed from SiO2, which have many material applications.

Related Links:

Harvard Medical School
Integrated DNA Technologies



Channels

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Lab Technologies

view channel
Image: Diagram of the apparatus for testing drug solubility (Photo courtesy of the University of Huddersfield).

Novel Apparatus Mimics the Human Digestive System for Oral Drug Studies

A team of British drug developers has created an instrument that mimics the human digestive system, which will allow them to accurately determine how orally-administered medications are dissolved and then absorbed.... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.