Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Histone Deacetylase 3 Critical in Maintaining Healthy Intestinal Function

By BiotechDaily International staff writers
Posted on 11 Nov 2013
Image: A histologic section of intestinal tissue isolated from healthy mice stained to visualize intestinal epithelial cells (EpCAM, red), including Paneth cells (lysozyme, magenta), as well as immune cells (CD45, green) Nuclei are stained with DAPI (blue) (Photo courtesy of the University of Pennsylvania).
Image: A histologic section of intestinal tissue isolated from healthy mice stained to visualize intestinal epithelial cells (EpCAM, red), including Paneth cells (lysozyme, magenta), as well as immune cells (CD45, green) Nuclei are stained with DAPI (blue) (Photo courtesy of the University of Pennsylvania).
A team of molecular microbiologists have found that the enzyme HDAC3 (histone deacetylase 3) in intestinal epithelial cells regulates the relationship between commensal bacteria and mammalian intestine physiology.

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation and deacetylation alter chromosome structure and affect transcription factor access to DNA. HDAC3 represses transcription when tethered to a promoter. This protein can also down-regulate p53 function and thus modulate cell growth and apoptosis. The HDAC3 gene is regarded as a potential tumor suppressor gene.

Investigators at the University of Pennsylvania (Philadelphia, USA) examined the role of HDAC3 in maintaining a healthy symbiotic relationship between the intestinal tract and its mixture of commensal bacteria—the microbiota.

To this end, the investigators genetically engineered a line of mice that lacked HDAC3 specifically in the intestinal epithelium. They found that these animals exhibited extensive dysregulation of gene expression, including decreased basal expression of genes associated with antimicrobial defense. When housed under normal laboratory conditions, the genetically engineered mice demonstrated loss of Paneth cells (which secrete antibacterial compounds into the lumen of the intestinal gland, thereby contributing to maintenance of the gastrointestinal barrier), impaired gastrointestinal function, and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3-deficient mice showed significantly increased susceptibility to intestinal damage and inflammation.

Normal gastrointestinal behavior was maintained if the HDAC3-deficient mice were raised in a germ-free environment so that they lacked commensal bacteria.

“There is a fundamental change in the relationship between commensal bacteria and their mammalian hosts following deletion of HDAC3 in the intestine,” said senior author Dr. David Artis, associate professor of microbiology at the University of Pennsylvania. “The implication is that intestinal expression of HDAC3 is an essential component of how mammals regulate the relationship between commensal bacteria and normal, healthy intestinal function. Obviously more has to be done, but it is clear that this is a pathway that is of significant interest as we continue to define how mammals have coevolved with beneficial microbes.”

The study was published in the November 3, 2013, online edition of the journal Nature.

Related Links:

University of Pennsylvania



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.