Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Loss of STAG2 Gene Improves Bladder Cancer Prognosis

By BiotechDaily International staff writers
Posted on 23 Oct 2013
Print article
Image: This image shows a bladder tumor sample containing mutations in the STAG2 gene (Photo courtesy of the Spanish National Cancer Research Center).
Image: This image shows a bladder tumor sample containing mutations in the STAG2 gene (Photo courtesy of the Spanish National Cancer Research Center).
Results obtained during a study conducted by Spanish cancer researchers indicated that mutations of the STAG2 (stromal antigen 2) gene suppressed development of urothelial bladder cancer (UBC) by acting through mechanisms that were different from the gene's role in preventing aneuploidy.

The protein encoded by the STAG2 gene is a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Targeted inactivation of this gene results in chromatid cohesion defects and aneuploidy, suggesting that genetic disruption of cohesin is a cause of aneuploidy in human cancer.

Bladder cancer represents a serious public health problem in many countries, especially in Spain, where 11,200 new cases are recorded every year, one of the highest rates in the world. The majority of these tumors have a good prognosis for five-year survival after diagnosis, and most have not infiltrated the bladder muscle at the time of diagnosis.

Investigators at the Spanish National Cancer Research Center (Madrid) performed an exome sequencing study to identify genes linked to noninfiltrating bladder cancer. They analyzed the exome from 17 bladder cancer patients and subsequently validated the data by the analyzing a specific group of genes in 60 additional patients.

Results published in the October 13, 2013, online edition of the journal Nature Genetics revealed a set of previously unidentified genes mutated in these tumors coding for proteins involved in chromatin modification (MLL2, ASXL2, and BPTF), cell division (STAG2, SMC1A, and SMC1B) and DNA repair (ATM, ERCC2, and FANCA). STAG2 was significantly and commonly mutated or lost in UBC, mainly in tumors of low stage or grade, and its loss was associated with improved outcome.

Loss of STAG2 expression was often observed in chromosomally stable tumors, and STAG2 knockdown in bladder cancer cells did not increase aneuploidy. Insertion of STAG2 into nonexpressing cells led to reduced colony formation. Furthermore, analysis of bladder tumor tissue from more than 670 patients indicated that alterations in STAG2 were associated with a better prognosis.

"We found up to nine altered genes that had not been described before in this type of tumor, and of these we found that STAG2 was inactive in almost 40% of the least aggressive tumors," said senior author Dr. Francisco X. Real, head of the epithelial carcinogenesis group at the Spanish National Cancer Research Centre. "Some of these genes are involved in previously undescribed genetic pathways in bladder cancer, such as cell division and DNA repair; also, we confirmed and extended other genetic pathways that had previously been described in this cancer type, such as chromatin remodeling."

Related Links:

Spanish National Cancer Research Center



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.