Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Nutlin-3 Shows Promise for Treating Macular Degeneration

By BiotechDaily International staff writers
Posted on 23 Sep 2013
Print article
Image: Subretinal hemorrhage in a wet macular degeneration patient (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Subretinal hemorrhage in a wet macular degeneration patient (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Normal adult mouse retinal vasculature (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Normal adult mouse retinal vasculature (Photo courtesy of Chavala Laboratory, University of North Carolina).
A low molecular weight drug, Nutlin-3, prevented growth of new blood vessels in cell cultures and in a mouse model and may prove to be the treatment of choice for macular degeneration.

Age-related macular degeneration characterized by development of abnormal blood vessels in the eye is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as monoclonal antibodies that target vascular endothelial growth factor) are effective in treating the syndrome, but have not led to a durable effect and often require indefinite treatment.

Investigators at the University of North Carolina (Chapel Hill, USA) have been working with the drug Nutlin-3. Nutlins are cis-imidazoline analogs that inhibit the interaction between the enzyme MDM2 and the tumor suppressor p53. MDM2 is an E3 ubiquitin-protein ligase. It binds to p53 and targets it to ubiquitin-mediated degradation in proteasomes. Nutlin-3 has been shown to affect the production of p53 within minutes.

A paper published in the September 9, 2013, online edition of the Journal of Clinical Investigation revealed that a functional p53 pathway was essential for the Nutlin-3-mediated inhibition of new blood vessel formation in the retina. Disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3.

Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model.

Nutlin-3 eliminated the newly forming, problematic blood vessels associated with wet macular degeneration by activating the p53 protein, a master regulator that determines whether a cell lives or dies. “By activating p53, we can initiate the cell death process in these abnormal blood vessels,” said senior author Dr. Sai Chavala, assistant professor of ophthalmology and cell biology and physiology at the University of North Carolina. “We believe we may have found an optimized treatment for macular degeneration. Our hope is that MDM2 inhibitors would reduce the treatment burden on both patients and physicians.”

Related Links:
University of North Carolina School of Medicine



Print article

Channels

Genomics/Proteomics

view channel

Cardiac Researchers Use Stem Cells to Generate Functional Heart Muscle

Stem cell researchers have developed a new technique to form micro-scale arrays of engineered heart muscle (EHM) from fewer than 10,000 starter cells without requirement for adherence features or extracellular matrix (ECM). Tissue engineering approaches have the potential to increase the physiologic relevance of cells,... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.