Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

Nutlin-3 Shows Promise for Treating Macular Degeneration

By BiotechDaily International staff writers
Posted on 23 Sep 2013
Image: Subretinal hemorrhage in a wet macular degeneration patient (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Subretinal hemorrhage in a wet macular degeneration patient (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Normal adult mouse retinal vasculature (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Normal adult mouse retinal vasculature (Photo courtesy of Chavala Laboratory, University of North Carolina).
ADVERTISEMENT
SARTORIUS AG
A low molecular weight drug, Nutlin-3, prevented growth of new blood vessels in cell cultures and in a mouse model and may prove to be the treatment of choice for macular degeneration.

Age-related macular degeneration characterized by development of abnormal blood vessels in the eye is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as monoclonal antibodies that target vascular endothelial growth factor) are effective in treating the syndrome, but have not led to a durable effect and often require indefinite treatment.

Investigators at the University of North Carolina (Chapel Hill, USA) have been working with the drug Nutlin-3. Nutlins are cis-imidazoline analogs that inhibit the interaction between the enzyme MDM2 and the tumor suppressor p53. MDM2 is an E3 ubiquitin-protein ligase. It binds to p53 and targets it to ubiquitin-mediated degradation in proteasomes. Nutlin-3 has been shown to affect the production of p53 within minutes.

A paper published in the September 9, 2013, online edition of the Journal of Clinical Investigation revealed that a functional p53 pathway was essential for the Nutlin-3-mediated inhibition of new blood vessel formation in the retina. Disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3.

Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model.

Nutlin-3 eliminated the newly forming, problematic blood vessels associated with wet macular degeneration by activating the p53 protein, a master regulator that determines whether a cell lives or dies. “By activating p53, we can initiate the cell death process in these abnormal blood vessels,” said senior author Dr. Sai Chavala, assistant professor of ophthalmology and cell biology and physiology at the University of North Carolina. “We believe we may have found an optimized treatment for macular degeneration. Our hope is that MDM2 inhibitors would reduce the treatment burden on both patients and physicians.”

Related Links:
University of North Carolina School of Medicine



Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.