Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Results from Rat Study May Lead to Prevention of Cocaine Addiction in Humans

By BiotechDaily International staff writers
Posted on 01 Apr 2013
Disruption of a "feed-forward loop" that links the activities of two enzymes in the nucleus accumbens region of the brain of cocaine addicts prevented or reversed addiction to the drug in a rodent model and in tissues taken from deceased human subjects.

The transcription factor delta-FosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKII-alpha) were induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse.

Investigators at Michigan State University (East Lansing, USA) reported in the March 6, 2013, issue of the Journal of Neuroscience that delta-FosB was phosphorylated by CaMKII-alpha at the protein-stabilizing serine-27 residue, and that CaMKII-alpha was required for the cocaine-mediated accumulation of delta-FosB in rat NAc. Conversely, they showed that delta-FosB was both necessary and sufficient for cocaine induction of CaMKII-alpha gene expression in vivo.

The current study further demonstrated the induction of delta-FosB and CaMKII-alpha in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These results suggest that delta-FosB and CaMKII-alpha engaged in a cell-type- and brain-region-specific positive feed-forward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.

“Understanding what happens molecularly to this brain region during long-term exposure to drugs might give us insight into how addiction occurs,” said first author Dr. A.J. Robison, assistant professor in the physiology at Michigan State University. “The increased production of these proteins that we found in the animals exposed to drugs was exactly paralleled in a population of human cocaine addicts. That makes us believe that the further experiments and manipulations we did in the animals are directly relevant to humans.”

Related Links:
Michigan State University




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.