Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Results from Rat Study May Lead to Prevention of Cocaine Addiction in Humans

By BiotechDaily International staff writers
Posted on 01 Apr 2013
Disruption of a "feed-forward loop" that links the activities of two enzymes in the nucleus accumbens region of the brain of cocaine addicts prevented or reversed addiction to the drug in a rodent model and in tissues taken from deceased human subjects.

The transcription factor delta-FosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKII-alpha) were induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse.

Investigators at Michigan State University (East Lansing, USA) reported in the March 6, 2013, issue of the Journal of Neuroscience that delta-FosB was phosphorylated by CaMKII-alpha at the protein-stabilizing serine-27 residue, and that CaMKII-alpha was required for the cocaine-mediated accumulation of delta-FosB in rat NAc. Conversely, they showed that delta-FosB was both necessary and sufficient for cocaine induction of CaMKII-alpha gene expression in vivo.

The current study further demonstrated the induction of delta-FosB and CaMKII-alpha in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These results suggest that delta-FosB and CaMKII-alpha engaged in a cell-type- and brain-region-specific positive feed-forward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.

“Understanding what happens molecularly to this brain region during long-term exposure to drugs might give us insight into how addiction occurs,” said first author Dr. A.J. Robison, assistant professor in the physiology at Michigan State University. “The increased production of these proteins that we found in the animals exposed to drugs was exactly paralleled in a population of human cocaine addicts. That makes us believe that the further experiments and manipulations we did in the animals are directly relevant to humans.”

Related Links:
Michigan State University




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.