We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Respiratory Syncytial Virus Inhibits a Critical Lung Anti-Inflammatory Protein

By LabMedica International staff writers
Posted on 23 Mar 2011
Print article
Respiratory syncytial virus (RSV), a major cause of lower respiratory tract infections in children, damages lung tissue by inducing reactive oxygen species (ROS) while inhibiting a protein that would otherwise trigger a massive anti-inflammatory response to prevent oxidative injury in the lungs.

Investigators at the University of Texas Medical Branch (Galveston, USA) analyzed tissues from children with RSV infections as well as results from experiments conducted on mice. They reported in the March 4, 2011, online edition of the American Journal of Respiratory and Critical Care Medicine that Nrf2 (nuclear factor (erythroid-derived 2)-like 2) expression was significantly reduced in the children's lung tissue and in the lungs of viral infected mice. Reduction in Nrf2 activity induced a significant decrease in the expression and/or activity of SOD (superoxide dismutase), catalase, GST (glutathione S-transferase), and GPx (glutathione peroxidase). Furthermore, markers of oxidative damage correlated with severity of clinical illness in RSV-infected infants.

Nrf2 is a transcription factor, which in humans is encoded by the NFE2L2 gene. Nrf2 is a master regulator of the antioxidant response, which is important for the amelioration of oxidative stress. Oxidative stress can result in cancer, cardiovascular diseases, inflammation, neurological diseases, and renal disease. Because Nrf2 is able to induce genes important in combating oxidative stress, thereby activating the body's own protective response, it is able to protect from a variety of oxidative stress-related complications, even in situations where the administration of exogenous antioxidants (such as Vitamin C and Vitamin E) have failed.

"What was really striking is that Nrf2 is a kind of master switch controlling the machinery of these antioxidant enzymes, and it appears the virus blocks its activity,” said senior author Dr. Roberto Garofalo, professor of pediatrics, microbiology, and immunology at the University of Texas Medical Branch. "This is interesting because genetic factors have been shown to be associated with other airway diseases, and the obvious question now is do the children who develop the most severe disease in response to RSV also have an Nrf2 gene that favors a low level of expression of these antioxidant enzymes? Are we seeing a combination of two hits, one from the virus, and one from genetics?”

Related Links:
University of Texas Medical Branch


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.