We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Microprotein Functions in Messenger RNA Removal Complex

By LabMedica International staff writers
Posted on 15 Dec 2016
Print article
Image: Human kidney cells stained with a P-body marker (red) and NoBody (green). Yellow dots are where P-bodies and NoBody interact. Cell nuclei are shown in blue (Photo courtesy of Yale University).
Image: Human kidney cells stained with a P-body marker (red) and NoBody (green). Yellow dots are where P-bodies and NoBody interact. Cell nuclei are shown in blue (Photo courtesy of Yale University).
A novel "microprotein" has been identified and shown to fulfill a cellular maintenance function by prepping nonessential messenger RNA (mRNA) for destruction and removal from the cytoplasm.

MicroProteins are short single-domain proteins that possess the ability to interfere with larger multi-domain proteins. These protein species can be identified in plants and animals where they evolved from large proteins by successive domain-loss. In previous studies proteomic detection of non-annotated microproteins indicated the translation of hundreds of small open reading frames (smORFs) in human cells, but whether these microproteins had any function was unknown.

Investigators at Yale University (New Haven, CT, USA) located a clutch of microproteins by extracting the large proteins from myeloid leukemia cells and then using liquid chromatography-mass spectroscopy proteomics to determine the amino acid sequences of all remaining small proteins.

They reported in the December 5, 2016, online edition of the journal Nature Chemical Biology that they had identified a 7000 Dalton human microprotein that interacted with mRNA decapping proteins, which remove the 5′ cap from mRNAs to promote 5′-to-3′ decay. Decapping proteins participate in mRNA turnover and nonsense-mediated decay (NMD). The investigators called their novel microprotein "non-annotated P-body dissociating polypeptide" or NoBody.

The investigators found that NoBody localized to mRNA-decay-associated RNA-protein granules called P-bodies. However, the amount of NoBody was not dependent of the number of cellular P-body elements. These results implicated NoBody as a novel component of the mRNA decapping complex and demonstrated the potential functionality of a newly discovered microprotein.

"The broadest significance of this work is that even in a well-studied biological process, a microprotein has been right there under our noses, undetected, all this time," said senior author Dr. Sarah Slavoff, assistant professor of chemistry, molecular biophysics, and biochemistry at Yale University.

Related Links:
Yale University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.