We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cardiomyopathy Linked to Faulty Regulation of Heart Protein Succinylation

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: A model of the structure of the SIRT5 protein (Photo courtesy of Wikimedia Commons).
Image: A model of the structure of the SIRT5 protein (Photo courtesy of Wikimedia Commons).
The enzyme SIRT5, also known as sirtuin (silent mating type information regulation 2 homolog) 5, was found to play a critical role in maintaining healthy cardiac function by regulating the lysine succinylation modification of heart cell proteins.

Lysine succinylation is a recently discovered protein posttranslational modification (PTM), and SIRT5 is an efficient desuccinylase enzyme. Although many mammalian proteins have been found to be regulated by lysine succinylation and SIRT5, the physiological significance of succinylation and SIRT5 remains unknown.

To better understand the consequences of protein succinylation, investigators at Cornell University (Ithaca, NY, USA) and their colleagues at Ecole Polytechnique Fédérale de Lausanne (Switzerland) profiled acyl-CoA molecules in various mouse tissues. They discovered that different tissues had different acyl-CoA profiles and that succinyl-CoA was the most abundant acyl-CoA molecule in the heart. This observation prompted them to examine protein lysine succinylation in different mouse tissues in the presence and absence of SIRT5.

The investigators reported in the April 5, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that protein lysine succinylation predominantly accumulated in the heart in mice that had been genetically engineered to lack the gene for Sirt5. Using proteomic studies, they were able to identify many cardiac proteins regulated by SIRT5.

In particular, they found that ECHA (also known as HADHA or hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit), a protein involved in fatty acid oxidation, was a major enzyme that was regulated by SIRT5 and affected heart function. Sirt5 knockout (KO) mice had lower ECHA activity, increased long-chain acyl-CoAs, and decreased ATP in the heart under fasting conditions. On the physiological level, it was found that Sirt5 KO mice developed hypertrophic cardiomyopathy, as evident from the increased heart weight relative to body weight in these animals.

"Our research suggests that perhaps one way to improve heart function is to find a way to improve SIRT5 activity," said senior author Dr. Hening Lin, professor of chemistry and chemical biology at Cornell University.

"The identification of this new role of SIRT5 in cardiomyopathy assigns an important role of this druggable enzyme in one of the major cardiac diseases," said contributing author Dr. Johan Auwerx, professor of energy metabolism at the Ecole Polytechnique Fédérale de Lausanne. "It can be expected that pharmacological interference with these pathways will lead to new therapies for cardiomyopathy that, as such, can extend healthy life span."

Related Links:
Cornell University
Ecole Polytechnique Fédérale de Lausanne
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.