We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Global Regulator of Gene Transcription Identified as Potential Anticancer Drug Target

By LabMedica International staff writers
Posted on 14 Feb 2016
Print article
Image: Human breast cancers (blue) grown on mice show marked reductions in inflammatory cytokines such as IL1a and IL6 (yellow) when MLL1 is inhibited (Photo courtesy of Dr. Brain Capell, University of Pennsylvania).
Image: Human breast cancers (blue) grown on mice show marked reductions in inflammatory cytokines such as IL1a and IL6 (yellow) when MLL1 is inhibited (Photo courtesy of Dr. Brain Capell, University of Pennsylvania).
The enzyme MLL1 (histone-lysine N-methyltransferase 2A) was identified as a potential target for anticancer drugs after researchers found that its inhibition prevented tumor development by shutting down the DNA damage response mechanism and suppressed inflammation by blocking the activity of proliferation-promoting genes.

MLL is a histone methyltransferase deemed a positive global regulator of gene transcription. This protein belongs to the group of histone-modifying enzymes and is involved in the epigenetic maintenance of transcriptional memory. Previous observations linked this transcription-associated methyltransferase and oncoprotein to the DNA damage response (DDR), which led investigators at the University of Pennsylvania (Philadelphia, USA) to examine the role of MLL1 in cancer development and in the appearance of age-related inflammation.

They reported in the February 1, 2016, issue of the journal Genes & Development that MLL1 displayed direct epigenetic control over pro-proliferative cell cycle genes. Inhibition of MLL1 repressed expression of pro-proliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling age-related inflammation expression. However, these effects of MLL1 inhibition on age-related inflammation gene expression did not impair oncogene-induced senescence (OIS) and, abolished the ability of the age-related inflammation to enhance cancer cell proliferation. These results demonstrated that MLL1 inhibition may be a powerful and effective strategy for blocking cancerous growth through the direct epigenetic regulation of proliferation-promoting genes.

"Since tumor-promoting inflammation is one of the hallmarks of cancer, these findings suggest that MLL1 inhibitors may be highly potent anticancer drugs through both direct epigenetic effects on proliferation-promoting genes, as well as through the inhibition of inflammation in the tumor microenvironment," said first author Dr. Brian Capell, a medical fellow in epigenetics and dermatology at the University of Pennsylvania. "In cancer, this could be a potent one-two punch, by blocking both proliferation-promoting genes as well as the cancerous inflammation. One could imagine taking an MLL1 inhibitor as a primary treatment, but also as an adjuvant therapy to tamp down the rampant inflammation caused by drugs like chemotherapies."

Related Links:

University of Pennsylvania


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.