We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biodegradable Metallic Nanodrops for Safe Cancer Drug Delivery

By LabMedica International staff writers
Posted on 14 Dec 2015
Print article
Image: A schematic illustration of the liquid-metal nano-terminators (left). The red spheres are the anticancer drug doxorubicin. A representative TEM image of the liquid-metal nano-terminators (right) (Photo courtesy of North Carolina State University).
Image: A schematic illustration of the liquid-metal nano-terminators (left). The red spheres are the anticancer drug doxorubicin. A representative TEM image of the liquid-metal nano-terminators (right) (Photo courtesy of North Carolina State University).
A novel drug delivery system based on liquid metal nanodrops was used to safely transport the highly toxic chemotherapeutic agent doxorubicin (Dox) into the cancer cells comprising ovarian tumors in a mouse xenograft model.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer.

Investigators at North Carolina State University (Raleigh, USA) and the University of North Carolina (Chapel Hill, USA) have incorporated Dox into nanodrops composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell.

The nanodrops were created by sonication of a bulk liquid metal (gallium indium alloy) solution that contained two types of polymeric ligands. The ultrasound treatment caused the solution to form minute droplets approximately 100 nanometers in diameter. The ligands in the solution attached to the surface of the droplets as they broke away from the bulk metal. Dox was then introduced into the solution where it attached to the nanodrops by binding to one of the surface ligands. The further attachment of hyaluronic acid to the nanodrops ensured that they would specifically target cancer cells.

Results published in the December 2, 2015, online edition of the journal Nature Communications revealed that when absorbed by the tumor, the higher level of acidity inside the cancer cells dissolved the oxidized skin of the nanodroplets. This released the ligands, which subsequently released the Dox inside the cells. In the mouse model, the nanodrop delivery system was significantly more effective than administration of Dox alone at inhibiting the growth of ovarian cancer tumors. Furthermore, after 90 days no signs of toxicity were found that were related to the liquid metal.

As a bonus, the liquid metal nanodrops reacted with the acidic environment in the cancer cells and dissolved to release gallium ions. These gallium ions enhanced the performance of anticancer drugs - including their effectiveness against drug-resistant cell lines.

"The advance here is that we have a drug-delivery technique that may enhance the effectiveness of the drugs being delivered, can help doctors locate tumors, can be produced in bulk, and appears to be wholly biodegradable with very low toxicity," said senior author Dr. Zhen Gu assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. "And one of the advantages of this technique is that these liquid metal drug carriers—or "nano-terminators"—are very easy to make. This was a proof-of-concept study, but very encouraging. Like the fictional Terminator, this carrier is transformable: smashed from bulk material, fused inside cancer cells, and eventually degraded and cleared. We are hoping to do additional testing in a large animal study to get closer to potential clinical trials."

Related Links:

North Carolina State University
University of North Carolina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.