Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Early Alzheimer’s Detection Sensor Could Also Diagnose Other Diseases at POC

By LabMedica International staff writers
Posted on 23 Jan 2023

Tumor Necrosis Factor alpha (TNF alpha), is a cytokine, a particular type of small protein, that is involved with inflammation in the body. Abnormal cytokine levels have been linked to various diseases including Alzheimer’s disease, cancers, autoimmune and heart disease. TNF alpha is capable of acting as a biomarker, a measurable characteristic indicating health status. Currently, screening tests for Alzheimer’s disease involve a questionnaire to determine the individual’s symptoms, brain imaging, or a spinal tap process to test for biomarker proteins in the cerebral spinal fluid. Now, researchers are developing a new biosensor for detecting TNF alpha that can be used to screen for Alzheimer’s disease and other diseases.

COVID-19 is also capable of causing inflammatory reactions known as ‘cytokine storms.’ Research has demonstrated that cytokine inhibitors can be an effective treatment for improving chances of survival. There are several established methods for detecting biomarker proteins such as enzyme-linked immunosorbent assay (ELISA) and mass spectrometry, although they have some limitations such as high cost, the need for samples to be sent to a lab for testing, and results being available after a day or more.

The sensor developed by researchers at Simon Fraser University (Burnaby, B.C., Canada) works by detecting TNF alpha. The biosensor is extremely sensitive and is capable of detecting TNF alpha in very low concentrations (10 fM) – much below the concentrations generally found in healthy blood samples (200–300 fM). The researchers have successfully completed the proof-of-concept stage by proving that the two-electrode diode sensor can effectively detect TNF alpha in a laboratory setting. The team now plans to conduct clinical trials to test if the biosensor can effectively detect biomarker proteins within a blood sample that contains several different interfering proteins and other substances.

“Our goal is to develop a sensor that’s less invasive, less expensive and simpler to use than existing methods,” said Engineering Science Assistant Professor Michael Adachi, the project’s co-lead. “These sensors are also small and have potential to be placed in doctor’s offices to help diagnose different diseases, including Alzheimer’s disease.”

“We will continue testing the device’s ability to detect the same proteins using body fluid like blood samples,” added engineering science PhD student Hamidreza Ghanbari. “The other objective is to use the same device but a different receptor to detect proteins that are more specific to Alzheimer’s disease.”

Related Links:
Simon Fraser University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.