Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Candidate Drug Kills Solid Tumors by Blocking Mitochondrial Respiration

By BiotechDaily International staff writers
Posted on 03 Mar 2014
Image: Transmission electron micrograph of a cell mitochondrion (Photo courtesy of the University of California, San Diego).
Image: Transmission electron micrograph of a cell mitochondrion (Photo courtesy of the University of California, San Diego).
Swedish researchers have developed a candidate low molecular weight drug that kills metabolically stressed cancer cells by interfering with the action of their mitochondria.

In solid tumors, there are areas with poor vascular supply where cancer cells divide more slowly due to a lack of oxygen and nutrients. When other tumor tissue is killed by chemo- or radiotherapy, theses dormant cells begin to grow and regenerate the tumor.

Investigators at Karolinska Institutet (Stockholm, Sweden) and the biotechnology company Vivolux AB (Uppsala, Sweden) have been looking for new drug candidates that could be used for the treatment and complete destruction of solid tumors. To this end, they employed spheroid cultures of HCT116 colon cancer cells to screen a diverse chemical library in order to find compounds with cytotoxic activity in core, hypoxic, regions of solid tumors.

They reported in the February 18, 2014, online edition of the journal Nature Communications that the screen had identified the compound VLX600, which demonstrated anticancer activity with a large therapeutic window both in vitro and in vivo. VLX600 showed enhanced cytotoxic activity under conditions of nutrient starvation and its anticancer activity was associated with reduced mitochondrial respiration, which led to deficient mitochondrial energy production and tumor cell death.

"We have identified a small molecule that we call VLX600, which in various in vitro and in vivo models has proven effective against dormant colon cancer cells that are otherwise very difficult to treat. VLX600 is a mild inhibitor of mitochondrial respiration, and we have found that dormant cancer cells have a limited possibility to compensate decreased mitochondrial function by increased glycolysis. The dormant cancer cells therefore die by starvation," said senior author Dr. Stig Linder, professor of experimental oncology at Karolinska Institutet.

Related Links:

Karolinska Institutet
Vivolux AB 



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.