Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

HIV-Fighting Vectored Immunoprophylaxis Antibody Delivery Technique shows Potential

By BiotechDaily International staff writers
Posted on 27 Feb 2014
Image: The crystal structure of the small virus used to deliver antibodies as vectored immunoprophylaxis (VIP) against HIV (Photo courtesy of Alejandro Balazs, California Institute of Technology).
Image: The crystal structure of the small virus used to deliver antibodies as vectored immunoprophylaxis (VIP) against HIV (Photo courtesy of Alejandro Balazs, California Institute of Technology).
In 2011, US biologists demonstrated a very effective way to deliver HIV-fighting antibodies to laboratory mice: a treatment that protected the mice from infection by a laboratory strain of HIV delivered intravenously. The same researchers have now shown that the procedure is just as effective against a strain of HIV found in the real world, even when transmitted across mucosal surfaces.

The findings, which were published in the February 9, 2014, online publication of the journal Nature Medicine, suggest that the delivery technique might be effective in preventing vaginal transmission of HIV between humans. “The method that we developed has now been validated in the most natural possible setting in a mouse,” stated study leader Nobel Laureate Dr. David Baltimore, president emeritus and a professor of biology at California Institute of Technology (Caltech; Pasadena, USA). “This procedure is extremely effective against a naturally transmitted strain and by an intravaginal infection route, which is a model of how HIV is transmitted in most of the infections that occur in the world.”

The new Caltech delivery technology, called vectored immunoprophylaxis (VIP), is not precisely a vaccine. Vaccines introduce substances such as antigens into the body to try to get the immune system to initiate an appropriate attack, in order to generate antibodies that can stop an infection or T cells that can attack infected cells. In the instance of VIP, a small, harmless virus is injected and delivers genes to the muscle tissue, instructing it to generate specific antibodies.

The researchers emphasized that the research was conducted in lab mice and that human trials are not right around the corner. The team is now working with the vaccine research center at the national institutes of health to begin clinical evaluation.

Related Links:

California Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.