Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

European Drug Development Project Targets Gram-negative Bacteria

By BiotechDaily International staff writers
Posted on 25 Feb 2014
Print article
Image: Microscopic image of gram-negative Pseudomonas aeruginosa bacteria (pink-red rods) (Photo courtesy of Wikimedia Commons).
Image: Microscopic image of gram-negative Pseudomonas aeruginosa bacteria (pink-red rods) (Photo courtesy of Wikimedia Commons).
A consortium of European universities, research institutes, and biopharmaceutical companies has been established to discover and develop novel new antibiotics, especially for treatment of gram-negative bacterial infections.

The ENABLE (European Gram-Negative Antibacterial Engine) project brings together more than 30 European universities and companies, in a six-year program funded by the Innovative Medicines Initiative (Brussels, Belgium), a joint undertaking between the European Union and the pharmaceutical industry association EFPIA (European Federation of Pharmaceutical Industries and Associations – Brussels, Belgium).

The ENABLE project, which is the third within the ND4BB (New Drugs for Bad Bugs) series, spans 13 countries and charges the 32 partners with the mission of establishing a significant antibacterial drug discovery platform for the progression of research programs through discovery and Phase 1 clinical trials.

The primary target of the ENABLE project is gram-negative bacteria. Medically relevant gram-negative bacilli include a multitude of species. Some of them cause primarily respiratory problems (Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa), primarily urinary problems (Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens), and primarily gastrointestinal problems (Helicobacter pylori, Salmonella enteritidis, Salmonella typhi).

One of the several unique characteristics of these bacteria is the structure of the outer membrane. The outer leaflet of the membrane comprises a complex lipopolysaccharide (LPS) whose lipid portion acts as an endotoxin. If LPS enters the circulatory system, it causes a toxic reaction, with the sufferer developing a high temperature, high respiration rate, and low blood pressure. This may lead to endotoxic shock, which can be fatal. This outer membrane protects the bacteria from several antibiotics, dyes, and detergents that would normally damage either the inner membrane or the cell wall's (peptidoglycan). The outer membrane provides these bacteria with resistance to antibacterial agents such as lysozyme and penicillin.

MEDINA (Granada, Spain), one of the participants in the ENABLE project, is an independent nonprofit research and development organization established jointly by the pharmaceutical company Merck Sharp and Dohme, the government of Andalucia, and the University of Granada. Its researchers are actively seeking new molecules from its proprietary natural product libraries to develop new medicines that respond to unmet medical needs.

“MEDINA brings to the project one of the novel antibiotic molecules that will be developed within this partnership. Our participation in this program represents a fantastic opportunity to jointly develop one of our most advanced compounds in our pipeline,” said Dr. Olga Genilloud, scientific director of MEDINA. “MEDINA offers a unique and longstanding expertise in drug discovery. We are committed with the global research effort for the discovery of new antibiotics, as continuity of a long history of success which has resulted in some of the most important breakthrough drugs available to patients today.”

Related Links:

Innovative Medicines Initiative
European Federation of Pharmaceutical Industries and Associations
MEDINA



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.