Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Luteolin Nanocapsules Demonstrate Effective Anticancer Activity in Mouse Model

By BiotechDaily International staff writers
Posted on 23 Jan 2014
Image: Cellular uptake of nanoparticles encapsulating both dye and luteolin (Photo courtesy of Winship Cancer Institute of Emory University).
Image: Cellular uptake of nanoparticles encapsulating both dye and luteolin (Photo courtesy of Winship Cancer Institute of Emory University).
Nanocapsules containing the natural antioxidant luteolin were found to be significantly more effective than natural luteolin in inhibiting growth of cancer cells both in culture and in a mouse xenograft model.

Luteolin is a flavone, a type of flavonoid, and, like all flavonoids, has a yellow crystalline appearance. Dietary sources include celery, green pepper, thyme, dandelion, chamomile tea, carrots, olive oil, peppermint, rosemary, navel oranges, and oregano. Luteolin reportedly acts as a monoamine transporter activator, and is one of the few chemicals demonstrated to possess this property. Experiments have suggested that luteolin may inhibit the development of some types of skin cancer.

In the current study, investigators at Emory University (Atlanta, GA, USA) formulated water-soluble polymer-encapsulated Nano-Luteolin from luteolin, and studied its anticancer activity against lung cancer and head and neck cancer. The low water solubility of luteolin, which hampers its use in treatment due to problems of low bioavailability, poor systemic delivery, and low efficacy, led the investigators to choose a nanocapsule format for their experiments.

Results published in the January 2014 issue of the journal Cancer Prevention Research revealed that like luteolin, Nano-Luteolin inhibited the growth of lung cancer cells (H292 cell line) and squamous cell carcinoma of head and neck (SCCHN) cells (Tu212 cell line). In vivo studies using a tumor xenograft mouse model demonstrated that Nano-Luteolin had a significant inhibitory effect on the tumor growth of SCCHN in comparison to luteolin.

"Our results suggest that nanoparticle delivery of naturally occurring dietary agents like luteolin has many advantages," said senior author Dr. Dong Moon Shin, professor of hematology and medical oncology at Emory University. "By using a high concentration of luteolin in the blood, we were better able to inhibit the growth of cancer cells."

Related Links:

Emory University


Channels

Genomics/Proteomics

view channel
Image: Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by photoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes (Photo courtesy of Jing Claussen (iThera Medical, Germany)).

Gold Nanotubes Are Novel Agents for Cancer Diagnosis and Treatment

Cancer researchers have produced a highly defined class of gold nanotubes that are suitable for use in animals as in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.