Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Novel Drug Blocks Activity of Toxic Alzheimer's Disease Peptides

By BiotechDaily International staff writers
Posted on 19 Dec 2013
Image: Micrograph of an adult Caenorhabditis elegans (Photo courtesy of Wikimedia Commons).
Image: Micrograph of an adult Caenorhabditis elegans (Photo courtesy of Wikimedia Commons).
Drug developers have identified a compound that in a worm model blocks the action of the type of toxic peptide plaques that characterize human neurodegenerative diseases such as Alzheimer's and Huntington's.

Aging manipulation is an emerging strategy aimed to postpone the manifestation of late-onset neurodegenerative disorders such as Alzheimer's (AD) and Huntington's diseases (HD) and to slow their progression once emerged. Investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the biopharmaceutical start-up company TyrNovo (Herzliya, Israel) had shown previously that reducing the activity of the insulin/IGF signaling cascade (IIS), a prominent aging-regulating pathway, protected nematode worms (Caenorhabditis elegans) from the toxicity of various aggregative proteins, including the AD-associated peptide, A-beta and the HD-linked peptide, polyQ40.

In the current study the investigators worked with an AD model based on a variant of C. elegans that expresses the highly aggregative, human AD-associated peptide, A-beta-42, in their body wall muscles. The expression of A-beta in these animals leads to a progressive paralysis within the worm population. The investigators treated the A-beta-42 worms with TyrNovo's novel compound NT219. NT219 possesses a unique mechanism, which leads to the elimination of IRS 1/2 and the long-term blockage of all signals they transmit.

Results published in the November 22, 2013, online edition of the journal Aging Cell revealed that NT219 mediated a long-lasting, highly efficient inhibition of the IIS signaling cascade by a dual mechanism. It reduced the autophosphorylation of the IGF1 receptor and directed the insulin receptor substrates 1 and 2 (IRS 1/2) for degradation. NT219 treatment promoted stress resistance and protected nematodes from the toxicity of AD- and HD-associated peptides without affecting the lifespan of the organism.

"The findings of the study reinforces the claim that blocking the signaling pathway of insulin and the growth hormone IGF1, a pathway known to be a central controller of the aging process in worms and mammals, can potentially be used as a treatment for degenerative brain diseases," said senior author Dr. Ehud Cohen, professor of biochemistry and molecular biology at the Hebrew University of Jerusalem. "The new findings are the first evidence that a pharmacological substance can effectively protect against toxicity of proteins associated with neurodegenerative diseases, through selective inhibition of the aging process."

The investigators have filed a patent application based on this study that includes the rights for use of NT219 as a therapeutic agent.

Related Links:

Hebrew University of Jerusalem



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.