Features Partner Sites Information LinkXpress
Sign In
Demo Company

Novel Drug Blocks Activity of Toxic Alzheimer's Disease Peptides

By BiotechDaily International staff writers
Posted on 19 Dec 2013
Print article
Image: Micrograph of an adult Caenorhabditis elegans (Photo courtesy of Wikimedia Commons).
Image: Micrograph of an adult Caenorhabditis elegans (Photo courtesy of Wikimedia Commons).
Drug developers have identified a compound that in a worm model blocks the action of the type of toxic peptide plaques that characterize human neurodegenerative diseases such as Alzheimer's and Huntington's.

Aging manipulation is an emerging strategy aimed to postpone the manifestation of late-onset neurodegenerative disorders such as Alzheimer's (AD) and Huntington's diseases (HD) and to slow their progression once emerged. Investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the biopharmaceutical start-up company TyrNovo (Herzliya, Israel) had shown previously that reducing the activity of the insulin/IGF signaling cascade (IIS), a prominent aging-regulating pathway, protected nematode worms (Caenorhabditis elegans) from the toxicity of various aggregative proteins, including the AD-associated peptide, A-beta and the HD-linked peptide, polyQ40.

In the current study the investigators worked with an AD model based on a variant of C. elegans that expresses the highly aggregative, human AD-associated peptide, A-beta-42, in their body wall muscles. The expression of A-beta in these animals leads to a progressive paralysis within the worm population. The investigators treated the A-beta-42 worms with TyrNovo's novel compound NT219. NT219 possesses a unique mechanism, which leads to the elimination of IRS 1/2 and the long-term blockage of all signals they transmit.

Results published in the November 22, 2013, online edition of the journal Aging Cell revealed that NT219 mediated a long-lasting, highly efficient inhibition of the IIS signaling cascade by a dual mechanism. It reduced the autophosphorylation of the IGF1 receptor and directed the insulin receptor substrates 1 and 2 (IRS 1/2) for degradation. NT219 treatment promoted stress resistance and protected nematodes from the toxicity of AD- and HD-associated peptides without affecting the lifespan of the organism.

"The findings of the study reinforces the claim that blocking the signaling pathway of insulin and the growth hormone IGF1, a pathway known to be a central controller of the aging process in worms and mammals, can potentially be used as a treatment for degenerative brain diseases," said senior author Dr. Ehud Cohen, professor of biochemistry and molecular biology at the Hebrew University of Jerusalem. "The new findings are the first evidence that a pharmacological substance can effectively protect against toxicity of proteins associated with neurodegenerative diseases, through selective inhibition of the aging process."

The investigators have filed a patent application based on this study that includes the rights for use of NT219 as a therapeutic agent.

Related Links:

Hebrew University of Jerusalem

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.