We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Blocking the MK2 Pathway Sensitizes Lung Cancer Cells to DNA-Damaging Chemotherapy

By LabMedica International staff writers
Posted on 27 Nov 2013
Print article
Cancers with mutations in the p53 gene can be rendered more sensitive to chemotherapy with DNA-damaging agents such as cisplatin by co-treatment with a drug that blocks the function of the MK2 (p38 mitogen-activated protein kinase (MAPK)/MAPKAP kinase-2) gene.

The p53 tumor suppressor gene is the cell's critical defender against genome damage from chemicals, viruses, or ionizing radiation. The p53 protein is normally found at low levels, but when DNA damage is sensed, p53 levels rise and initiate protective measures. P53 binds to many regulatory sites in the genome and triggers production of proteins that halt cell division until the damage is repaired. Alternatively, if the damage is too severe, p53 initiates the process of apoptosis, which directs the cell to commit suicide, permanently removing the damage. Cancer cells typically contain two types of mutations: mutations that cause uncontrolled growth and multiplication of cells, and other mutations that block the normal defenses that protect against unnatural growth. P53 is in this second category and mutations in the p53 gene contribute to about half of the cases of human cancer. In these mutants, normal p53 function is blocked, and the protein is unable to stop multiplication of the damaged cell. If the cell has other mutations that cause uncontrolled growth, it will develop into a tumor.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) had found previously that in cancer cells with mutated p53, the MK2 gene helped counteract the effects of chemotherapy. When tumor cell DNA was damaged by drugs such as cisplatin, MK2 blocked cell division, giving cells time to repair the damage before dividing.

To understand this phenomenon better, the investigators genetically engineered a line of mice that spontaneously generated non-small-cell lung tumors to produce cancers with or without active MK2. The ability to generate otherwise genetically identical tumors in individual mice that differed in only a single genetic locus and monitor their response to treatment allowed direct in vivo analysis of synthetic lethal interactions in a solid tumor model.

The investigators reported in the November 14, 2013, online edition of the journal Cell Reports that before treatment, tumors lacking both MK2 and p53 grew faster than tumors that lacked p53 but had MK2. However, tumors that lacked both p53 and MK2 shrank dramatically when treated with the drug cisplatin, while tumors with functional MK2 continued to grow following treatment. Normal host tissues were protected from the enhanced toxicity of MK2 inhibition due to the presence of functional p53.

"Our data suggested if you block the MK2 pathway, tumor cells would not recognize that they had DNA damage and they would keep trying to divide despite having DNA damage, and they would end up committing suicide," said senior author Dr. Michael B. Yaffe, professor of science at the Massachusetts Institute of Technology. "What our study really says is that these drugs could have an entirely new second life, in combination with chemotherapy. What we found is a combination that you would never have arrived at otherwise. It is a nonobvious combination. We are very much hoping it will go into clinical trials for cancer."

Related Links:

Massachusetts Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.