Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Synthetic DNA/RNA Analogues Display Potent Antibiotic Activity

By BiotechDaily International staff writers
Posted on 29 Oct 2013
Image: Scanning electron microscope image of A. baumannii, with maps of its genome (outer circle) and alien-island sequences (inner circle, red) (Photo courtesy of J. Carr, [US] Centers for Disease Control; T. Gianoulis and D. Massa, Yale University).
Image: Scanning electron microscope image of A. baumannii, with maps of its genome (outer circle) and alien-island sequences (inner circle, red) (Photo courtesy of J. Carr, [US] Centers for Disease Control; T. Gianoulis and D. Massa, Yale University).
Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which are synthetic DNA/RNA analogues that silence expression of specific genes, were found to inhibit the growth of Acinetobacter in vitro and in vivo.

Acinetobacter is frequently isolated in nosocomial infections and is especially prevalent in intensive care units with sporadic cases as well as epidemic and endemic occurrence. A. baumannii is a frequent cause of nosocomial pneumonia, especially of late-onset ventilator associated pneumonia. It can cause various other infections including skin and wound infections, bacteremia, and meningitis, while A. lwoffi is mostly responsible for the latter. A. baumannii can survive on the human skin or dry surfaces for weeks. Acinetobacter species are innately resistant to many classes of antibiotics, including penicillin, chloramphenicol, and often aminoglycosides.

Investigators at Oregon State University (Corvallis, OR, USA) sought to determine whether PPMOs targeted to essential genes in A. lwoffii and A. baumannii were active in vitro and in vivo. They evaluated PPMOs in vitro cultures using the minimum inhibitory concentration (MIC) of the drug and viability assays, and in vivo using mouse pulmonary infection models with intranasal PPMO treatment.

Results published in the October 14, 2013, online edition of the Journal of Infectious Diseases revealed that the most effective PPMO tested was (RXR)4-AcpP, which was targeted to the acpP gene. This PPMO reduced viability of A. lwoffii and A. baumannii by more than 1,000 colony-forming units per milliliter at five to eight times the MIC. Mice treated with (RXR)4-AcpP survived longer and had less inflammation and bacterial lung burden than mice treated with a scrambled-sequence PPMO or phosphate-buffered saline. Treatment could be delayed after infection and still increase survival.

“The mechanism that PPMOs use to kill bacteria is revolutionary,” said first author Dr. Bruce Geller, professor of microbiology at Oregon State University. “They can be synthesized to target almost any gene, and in that way avoid the development of antibiotic resistance and the negative impacts sometimes associated with broad-spectrum antibiotics.”

Related Links:

Oregon State University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This micrograph depicts the presence of aerobic Gram-negative Neisseria meningitidis diplococcal bacteria; magnification 1150x (Photo courtesy of the CDC - US Centers for Disease Control and Prevention).

Infection by Meningitis Bacteria Depends on Dimerization State of Certain Host Cell Proteins

A team of molecular microbiologists has untangled the complex three-way interaction between the non-integrin laminin receptor (LAMR1), galectin-3 (Gal-2), and the pathogenic bacterium Neisseria meningitidis.... Read more

Lab Technologies

view channel
Image: The UC Santa Cruz Ebola Genome Portal contains links to the newly created Ebola browser and to scientific literature on the deadly virus (Photo courtesy of UCSC).

Ebola Genome Browser Now Online to Help Scientists’ Respond to Crisis

A US genomics institute has just released a new Ebola genome browser to help international researchers develop a vaccine and antiserum to help stop the spread of the Ebolavirus. The investigators led... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.