Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Synthetic DNA/RNA Analogues Display Potent Antibiotic Activity

By BiotechDaily International staff writers
Posted on 29 Oct 2013
Image: Scanning electron microscope image of A. baumannii, with maps of its genome (outer circle) and alien-island sequences (inner circle, red) (Photo courtesy of J. Carr, [US] Centers for Disease Control; T. Gianoulis and D. Massa, Yale University).
Image: Scanning electron microscope image of A. baumannii, with maps of its genome (outer circle) and alien-island sequences (inner circle, red) (Photo courtesy of J. Carr, [US] Centers for Disease Control; T. Gianoulis and D. Massa, Yale University).
Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which are synthetic DNA/RNA analogues that silence expression of specific genes, were found to inhibit the growth of Acinetobacter in vitro and in vivo.

Acinetobacter is frequently isolated in nosocomial infections and is especially prevalent in intensive care units with sporadic cases as well as epidemic and endemic occurrence. A. baumannii is a frequent cause of nosocomial pneumonia, especially of late-onset ventilator associated pneumonia. It can cause various other infections including skin and wound infections, bacteremia, and meningitis, while A. lwoffi is mostly responsible for the latter. A. baumannii can survive on the human skin or dry surfaces for weeks. Acinetobacter species are innately resistant to many classes of antibiotics, including penicillin, chloramphenicol, and often aminoglycosides.

Investigators at Oregon State University (Corvallis, OR, USA) sought to determine whether PPMOs targeted to essential genes in A. lwoffii and A. baumannii were active in vitro and in vivo. They evaluated PPMOs in vitro cultures using the minimum inhibitory concentration (MIC) of the drug and viability assays, and in vivo using mouse pulmonary infection models with intranasal PPMO treatment.

Results published in the October 14, 2013, online edition of the Journal of Infectious Diseases revealed that the most effective PPMO tested was (RXR)4-AcpP, which was targeted to the acpP gene. This PPMO reduced viability of A. lwoffii and A. baumannii by more than 1,000 colony-forming units per milliliter at five to eight times the MIC. Mice treated with (RXR)4-AcpP survived longer and had less inflammation and bacterial lung burden than mice treated with a scrambled-sequence PPMO or phosphate-buffered saline. Treatment could be delayed after infection and still increase survival.

“The mechanism that PPMOs use to kill bacteria is revolutionary,” said first author Dr. Bruce Geller, professor of microbiology at Oregon State University. “They can be synthesized to target almost any gene, and in that way avoid the development of antibiotic resistance and the negative impacts sometimes associated with broad-spectrum antibiotics.”

Related Links:

Oregon State University



Channels

Genomics/Proteomics

view channel
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that... Read more

Lab Technologies

view channel
Image: The ChilliBlock modular system for precise, controlled cooling and heatingof biological samples (Photo courtesy of Asynt).

Modular Cooling/Heating System Safeguards Temperature-Sensitive Biological Samples

A new modular system designed for precise, controlled cooling and heating of biological samples in microplates, vials and Eppendorf tubes is now available for biotech, clinical, and life science laboratories.... Read more

Business

view channel

MS Drug Deal to Net More Than USD 1 Billion

A pharmaceutical company based in Switzerland has purchased the remaining rights to the multiple sclerosis drug Ofatumumab, which will allow it to continue development of the compound for treating relapsing remitting multiple sclerosis (RRMS) and similar autoimmune diseases. Novartis (Basel, Switzerland) recently announced... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.