Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Synthetic DNA/RNA Analogues Display Potent Antibiotic Activity

By BiotechDaily International staff writers
Posted on 29 Oct 2013
Image: Scanning electron microscope image of A. baumannii, with maps of its genome (outer circle) and alien-island sequences (inner circle, red) (Photo courtesy of J. Carr, [US] Centers for Disease Control; T. Gianoulis and D. Massa, Yale University).
Image: Scanning electron microscope image of A. baumannii, with maps of its genome (outer circle) and alien-island sequences (inner circle, red) (Photo courtesy of J. Carr, [US] Centers for Disease Control; T. Gianoulis and D. Massa, Yale University).
Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which are synthetic DNA/RNA analogues that silence expression of specific genes, were found to inhibit the growth of Acinetobacter in vitro and in vivo.

Acinetobacter is frequently isolated in nosocomial infections and is especially prevalent in intensive care units with sporadic cases as well as epidemic and endemic occurrence. A. baumannii is a frequent cause of nosocomial pneumonia, especially of late-onset ventilator associated pneumonia. It can cause various other infections including skin and wound infections, bacteremia, and meningitis, while A. lwoffi is mostly responsible for the latter. A. baumannii can survive on the human skin or dry surfaces for weeks. Acinetobacter species are innately resistant to many classes of antibiotics, including penicillin, chloramphenicol, and often aminoglycosides.

Investigators at Oregon State University (Corvallis, OR, USA) sought to determine whether PPMOs targeted to essential genes in A. lwoffii and A. baumannii were active in vitro and in vivo. They evaluated PPMOs in vitro cultures using the minimum inhibitory concentration (MIC) of the drug and viability assays, and in vivo using mouse pulmonary infection models with intranasal PPMO treatment.

Results published in the October 14, 2013, online edition of the Journal of Infectious Diseases revealed that the most effective PPMO tested was (RXR)4-AcpP, which was targeted to the acpP gene. This PPMO reduced viability of A. lwoffii and A. baumannii by more than 1,000 colony-forming units per milliliter at five to eight times the MIC. Mice treated with (RXR)4-AcpP survived longer and had less inflammation and bacterial lung burden than mice treated with a scrambled-sequence PPMO or phosphate-buffered saline. Treatment could be delayed after infection and still increase survival.

“The mechanism that PPMOs use to kill bacteria is revolutionary,” said first author Dr. Bruce Geller, professor of microbiology at Oregon State University. “They can be synthesized to target almost any gene, and in that way avoid the development of antibiotic resistance and the negative impacts sometimes associated with broad-spectrum antibiotics.”

Related Links:

Oregon State University



Channels

Genomics/Proteomics

view channel
Image: Pluristem technicians produce PLacental eXpanded (PLX) cells in the company\'s state-of-the-art facility (Photo courtesy of Pluristem Therapeutics).

Placental Cells Secrete Factors That Protect Nerves from Ischemic Damage

Cells derived from placenta have been found to protect PC12 cells—rat-derived cells that behave similarly to and are used as stand-ins to study human nerve cells—in a culture-based ischemic stroke model.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.