Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

New Drugs Block Synthesis of Metabolites by Nutrient-Challenged Bacteria

By BiotechDaily International staff writers
Posted on 24 Oct 2013
Researchers have developed a new generation of antibiotics that kill bacteria by preventing them from making critical metabolites such as vitamins and amino acids.

Characterizing new drugs has been hindered by the difficulties inherent in identifying the mechanism of action (MOA) of biologically active molecules. To attack this problem, investigators at McMaster University (Hamilton, ON, Canada) developed a metabolite suppression approach to explore the MOA of antibacterial compounds under conditions of nutrient restriction.

They assembled an array of metabolites that could be screened for suppressors of inhibitory molecules. Further, they identified inhibitors of Escherichia coli growth under nutrient limitation and charted their interactions with the metabolite array. This strategy led to the discovery and characterization of three new antibacterial compounds, MAC168425 (3-(dimethylamino)-1-(4-methoxyphenyl)propan-1-one), MAC173979 (3,3-dichloro-1-(3-nitrophenyl)prop-2-en-1-one), and MAC13772 (2-(2-nitrophenylthio)acetohydrazide). MAC168425 was found to interfere with glycine metabolism, MAC173979 was a time-dependent inhibitor of p-aminobenzoic acid biosynthesis, and MAC13772 inhibited biotin biosynthesis. These findings were published in the October 13, 2013, online edition of the journal Nature Chemical Biology.

"We have developed technology to find new antibiotics using laboratory conditions that mimic those of infection in the human body," said senior author Dr. Eric Brown, professor of biochemistry and biomedical sciences at McMaster University.

"We are taking fresh aim at bacterial vitamin and amino acid production and finding completely novel antibacterial compounds," said Dr. Brown. "We threw away chemicals that blocked growth in conventional nutrient-rich conditions and focused instead on those that were only active in nutrient-poor conditions. The approach belies conventional thinking in antibiotic research and development, where researchers typically look for chemicals that block growth in the laboratory under nutrient-rich conditions, where vitamins and amino acids are plentiful, but in the human body these substances are in surprisingly short supply and the bacteria are forced to make these and other building blocks from scratch."

Related Links:

McMaster University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.