Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

New Drugs Block Synthesis of Metabolites by Nutrient-Challenged Bacteria

By BiotechDaily International staff writers
Posted on 24 Oct 2013
Researchers have developed a new generation of antibiotics that kill bacteria by preventing them from making critical metabolites such as vitamins and amino acids.

Characterizing new drugs has been hindered by the difficulties inherent in identifying the mechanism of action (MOA) of biologically active molecules. To attack this problem, investigators at McMaster University (Hamilton, ON, Canada) developed a metabolite suppression approach to explore the MOA of antibacterial compounds under conditions of nutrient restriction.

They assembled an array of metabolites that could be screened for suppressors of inhibitory molecules. Further, they identified inhibitors of Escherichia coli growth under nutrient limitation and charted their interactions with the metabolite array. This strategy led to the discovery and characterization of three new antibacterial compounds, MAC168425 (3-(dimethylamino)-1-(4-methoxyphenyl)propan-1-one), MAC173979 (3,3-dichloro-1-(3-nitrophenyl)prop-2-en-1-one), and MAC13772 (2-(2-nitrophenylthio)acetohydrazide). MAC168425 was found to interfere with glycine metabolism, MAC173979 was a time-dependent inhibitor of p-aminobenzoic acid biosynthesis, and MAC13772 inhibited biotin biosynthesis. These findings were published in the October 13, 2013, online edition of the journal Nature Chemical Biology.

"We have developed technology to find new antibiotics using laboratory conditions that mimic those of infection in the human body," said senior author Dr. Eric Brown, professor of biochemistry and biomedical sciences at McMaster University.

"We are taking fresh aim at bacterial vitamin and amino acid production and finding completely novel antibacterial compounds," said Dr. Brown. "We threw away chemicals that blocked growth in conventional nutrient-rich conditions and focused instead on those that were only active in nutrient-poor conditions. The approach belies conventional thinking in antibiotic research and development, where researchers typically look for chemicals that block growth in the laboratory under nutrient-rich conditions, where vitamins and amino acids are plentiful, but in the human body these substances are in surprisingly short supply and the bacteria are forced to make these and other building blocks from scratch."

Related Links:

McMaster University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.