Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Benztropine Reverses Multiple Sclerosis in Animal Models

By BiotechDaily International staff writers
Posted on 22 Oct 2013
Image: This study showed that the drug benztropine led to the repair of multiple sclerosis-damaged nerve fibers in animal models (Photo courtesy of Dr. Luke Lairson, The Scripps Research Institute).
Image: This study showed that the drug benztropine led to the repair of multiple sclerosis-damaged nerve fibers in animal models (Photo courtesy of Dr. Luke Lairson, The Scripps Research Institute).
Autoimmune disease researchers have reported the successful use of the Parkinson's disease drug benztropine [benzatropine (INN)] for treatment of animal models of multiple sclerosis.

Benztropine is a centrally acting anticholinergic/antihistamine agent resulting from the combination of the tropine portion of the atropine molecule and the benzohydryl portion of diphenhydramine. It is used in patients to reduce the side effects of antipsychotic treatment, such as pseudoparkinsonism and dystonia. Benztropine is also a second-line drug for the treatment of Parkinson's disease. It improves tremor, but not rigidity and bradykinesia.

Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, investigators at The Scripps Research Institute (La Jolla, CA, USA) performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. They screened over 100,000 chemical compounds for any that could potently induce oligodendrocyte progenitor cells to differentiate.

The investigators reported in the October 9, 2013, online edition of the journal Nature that benztropine was among the most effective of the compounds that were screened. Furthermore, it significantly decreased clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis.

Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays, and EAE adoptive transfer experiments indicated that the observed efficacy of the drug resulted directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicated that benztropine functioned by a mechanism that involved direct antagonism of M1 and/or M3 muscarinic receptors.

“We are excited about these results, and are now considering how to design an initial clinical trial,” said senior author Dr. Luke L. Lairson, assistant professor of chemistry at The Scripps Research Institute. “We are also looking at some of the other, relatively unknown molecules that we identified in our initial screen, to see if any of those has better clinical potential than benztropine.”

Related Links:

The Scripps Research Institute



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.