Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Benztropine Reverses Multiple Sclerosis in Animal Models

By BiotechDaily International staff writers
Posted on 22 Oct 2013
Image: This study showed that the drug benztropine led to the repair of multiple sclerosis-damaged nerve fibers in animal models (Photo courtesy of Dr. Luke Lairson, The Scripps Research Institute).
Image: This study showed that the drug benztropine led to the repair of multiple sclerosis-damaged nerve fibers in animal models (Photo courtesy of Dr. Luke Lairson, The Scripps Research Institute).
Autoimmune disease researchers have reported the successful use of the Parkinson's disease drug benztropine [benzatropine (INN)] for treatment of animal models of multiple sclerosis.

Benztropine is a centrally acting anticholinergic/antihistamine agent resulting from the combination of the tropine portion of the atropine molecule and the benzohydryl portion of diphenhydramine. It is used in patients to reduce the side effects of antipsychotic treatment, such as pseudoparkinsonism and dystonia. Benztropine is also a second-line drug for the treatment of Parkinson's disease. It improves tremor, but not rigidity and bradykinesia.

Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, investigators at The Scripps Research Institute (La Jolla, CA, USA) performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. They screened over 100,000 chemical compounds for any that could potently induce oligodendrocyte progenitor cells to differentiate.

The investigators reported in the October 9, 2013, online edition of the journal Nature that benztropine was among the most effective of the compounds that were screened. Furthermore, it significantly decreased clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis.

Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays, and EAE adoptive transfer experiments indicated that the observed efficacy of the drug resulted directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicated that benztropine functioned by a mechanism that involved direct antagonism of M1 and/or M3 muscarinic receptors.

“We are excited about these results, and are now considering how to design an initial clinical trial,” said senior author Dr. Luke L. Lairson, assistant professor of chemistry at The Scripps Research Institute. “We are also looking at some of the other, relatively unknown molecules that we identified in our initial screen, to see if any of those has better clinical potential than benztropine.”

Related Links:

The Scripps Research Institute



RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).

Turning Antibodies into Precisely Tuned Nanobodies

New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research. Antibodies control the process of recognizing and zooming in on molecular... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.