Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Resveratrol Shown Effective against Cancer After the Body Converts It

By BiotechDaily International staff writers
Posted on 16 Oct 2013
Study findings show that resveratrol is not rendered ineffective once it is metabolized by the body, contrary to what had been thought earlier.

This is a significant development, since resveratrol is metabolized very rapidly, and it was thought that levels of the extracted chemical drop too quickly to make it usable in clinical trials. The new research revealed that the chemical could still be absorbed into cells after it has been metabolized into resveratrol sulfates. Enzymes within cells are then able to degrade it into resveratrol again, demonstrating that levels of resveratrol in the cells are higher than was previously believed. In fact, the findings appear to show resveratrol may be more effective once it has been generated from resveratrol sulfate than it is if it has never been metabolized because the concentrations achieved are higher.

The investigators led by University of Leicester (UK) translational cancer research specialist Prof. Karen Brown, administered resveratrol sulfate to mice lab models. They were then able to detect free resveratrol in plasma and a range of tissues in the mice.

This is the first direct evidence that resveratrol can be formed from resveratrol sulfate in living animals, and the researchers think it may help to show how resveratrol is able to have beneficial effects in animals. The study also revealed that resveratrol generated from resveratrol sulfate is able to slow the growth of cancer cells by causing them to eat their own internal constituents and blocking them from dividing.

Prof. Karen Brown said, “There is a lot of strong evidence from laboratory models that resveratrol can do a whole host of beneficial things—from protecting against a variety of cancers and heart disease to extending lifespan. It has been known for many years that resveratrol is rapidly converted to sulfate and glucuronide metabolites in humans and animals—meaning the plasma concentrations of resveratrol itself quickly become very low after administration. It has always been difficult to understand how resveratrol is able to have activity in animal models when the concentrations present are so low, and it has made some people skeptical about whether it might have any effects in humans.”

The study’s findings were published October 2, 2013, in the journal Science Translational Medicine. Prof. Brown concluded, “Researchers have hypothesized for a long time that resveratrol might be regenerated from its major metabolites in whole animals but it has never been proven. Our study was the first to show that resveratrol can be regenerated from sulfate metabolites in cells and that this resveratrol can then have biological activity that could be useful in a wide variety of diseases in humans. Importantly, we did all our work with clinically achievable concentrations so we are hopeful that our findings will translate to humans. Overall, I think our findings are very encouraging for all types of medical research on resveratrol. They help to justify future clinical trials where, previously, it may have been difficult to argue that resveratrol can be useful in humans because of the low detectable concentrations. There is considerable commercial interest in developing new forms of resveratrol that can resist or overcome the issue of rapid metabolism. Our results suggest such products may not actually be necessary to deliver biologically active doses of resveratrol to people.”

Dr. Sarah Williams, Cancer Research UK (London) health information officer, said, “This interesting study supports continued research into resveratrol as a therapeutic molecule, but it’s important to note that any benefits from the molecule don’t come from drinking red wine. It’s well established that drinking any type of alcohol, including red wine, increases the risk of developing cancer.”

Related Links:

University of Leicester



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.