Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Nutlin-3 Shows Promise for Treating Macular Degeneration

By BiotechDaily International staff writers
Posted on 23 Sep 2013
Image: Subretinal hemorrhage in a wet macular degeneration patient (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Subretinal hemorrhage in a wet macular degeneration patient (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Normal adult mouse retinal vasculature (Photo courtesy of Chavala Laboratory, University of North Carolina).
Image: Normal adult mouse retinal vasculature (Photo courtesy of Chavala Laboratory, University of North Carolina).
A low molecular weight drug, Nutlin-3, prevented growth of new blood vessels in cell cultures and in a mouse model and may prove to be the treatment of choice for macular degeneration.

Age-related macular degeneration characterized by development of abnormal blood vessels in the eye is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as monoclonal antibodies that target vascular endothelial growth factor) are effective in treating the syndrome, but have not led to a durable effect and often require indefinite treatment.

Investigators at the University of North Carolina (Chapel Hill, USA) have been working with the drug Nutlin-3. Nutlins are cis-imidazoline analogs that inhibit the interaction between the enzyme MDM2 and the tumor suppressor p53. MDM2 is an E3 ubiquitin-protein ligase. It binds to p53 and targets it to ubiquitin-mediated degradation in proteasomes. Nutlin-3 has been shown to affect the production of p53 within minutes.

A paper published in the September 9, 2013, online edition of the Journal of Clinical Investigation revealed that a functional p53 pathway was essential for the Nutlin-3-mediated inhibition of new blood vessel formation in the retina. Disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3.

Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model.

Nutlin-3 eliminated the newly forming, problematic blood vessels associated with wet macular degeneration by activating the p53 protein, a master regulator that determines whether a cell lives or dies. “By activating p53, we can initiate the cell death process in these abnormal blood vessels,” said senior author Dr. Sai Chavala, assistant professor of ophthalmology and cell biology and physiology at the University of North Carolina. “We believe we may have found an optimized treatment for macular degeneration. Our hope is that MDM2 inhibitors would reduce the treatment burden on both patients and physicians.”

Related Links:
University of North Carolina School of Medicine



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.