Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Selective Modulation of Gamma-Secretase May Reverse Alzheimer's Disease

By BiotechDaily International staff writers
Posted on 22 Aug 2013
Image: Enzymes act on the APP (Amyloid precursor protein) and cut it into fragments of protein, one of which is called beta-amyloid, which is crucial in the formation of senile plaques in Alzheimer's disease (Photo courtesy of Wikimedia Commons).
Image: Enzymes act on the APP (Amyloid precursor protein) and cut it into fragments of protein, one of which is called beta-amyloid, which is crucial in the formation of senile plaques in Alzheimer's disease (Photo courtesy of Wikimedia Commons).
A new generation of drugs for treatment of Alzheimer's disease (AD) will prevent formation of amyloid-beta peptide-42 (A-beta42), the accumulation of which is considered by many researchers to be the cause of the disease.

In most forms of AD, abnormally large quantities of the long amyloid peptide-42 are formed due to the inappropriate action of the cleavage enzyme gamma-secretase. Gamma-secretase is a multi-subunit protease complex, itself an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. The most well-known substrate of gamma-secretase is amyloid precursor protein (APP), a large integral membrane protein that, when cleaved by both gamma-and beta-secretase, produces a short 39–42 amino acid peptide called amyloid-beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma-secretase is also critical in the related processing of the Notch protein.

Investigators at the Ecole Polytechnique Fédérale de Lausanne (Switzerland) studied a particularly aggressive early-onset type of familial Alzheimer’s disease that appears as early as thirty years of age and leaves patients with a life expectancy of only a few years.

They reported in the August 2, 2013, online edition of the journal Nature Communications that this syndrome was caused by mutations in the transmembrane domain of APP that affected both gamma- and epsilon-cleavage sites, by raising the A-beta42/40 ratio. The longer A-beta42 peptide is the form that aggregates into toxic amyloid plaques.

New drugs now under development change the location where gamma secretase cleaves the APP protein, thus producing amyloid peptide 38 instead of 42, which is shorter and does not aggregate into plaques.

"Scientists have been trying to target gamma secretase to treat Alzheimer's for over a decade," said senior author Dr. Patrick Fraering, professor of neurosciences at the Ecole Polytechnique Fédérale de Lausanne. "Our work suggests that next-generation molecules, by modulating rather than inhibiting the enzyme, could have few, if any, side-effects. It is tremendously encouraging."

Related Links:

Ecole Polytechnique Fédérale de Lausanne



comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.