Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Selective Modulation of Gamma-Secretase May Reverse Alzheimer's Disease

By BiotechDaily International staff writers
Posted on 22 Aug 2013
Image: Enzymes act on the APP (Amyloid precursor protein) and cut it into fragments of protein, one of which is called beta-amyloid, which is crucial in the formation of senile plaques in Alzheimer's disease (Photo courtesy of Wikimedia Commons).
Image: Enzymes act on the APP (Amyloid precursor protein) and cut it into fragments of protein, one of which is called beta-amyloid, which is crucial in the formation of senile plaques in Alzheimer's disease (Photo courtesy of Wikimedia Commons).
A new generation of drugs for treatment of Alzheimer's disease (AD) will prevent formation of amyloid-beta peptide-42 (A-beta42), the accumulation of which is considered by many researchers to be the cause of the disease.

In most forms of AD, abnormally large quantities of the long amyloid peptide-42 are formed due to the inappropriate action of the cleavage enzyme gamma-secretase. Gamma-secretase is a multi-subunit protease complex, itself an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. The most well-known substrate of gamma-secretase is amyloid precursor protein (APP), a large integral membrane protein that, when cleaved by both gamma-and beta-secretase, produces a short 39–42 amino acid peptide called amyloid-beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma-secretase is also critical in the related processing of the Notch protein.

Investigators at the Ecole Polytechnique Fédérale de Lausanne (Switzerland) studied a particularly aggressive early-onset type of familial Alzheimer’s disease that appears as early as thirty years of age and leaves patients with a life expectancy of only a few years.

They reported in the August 2, 2013, online edition of the journal Nature Communications that this syndrome was caused by mutations in the transmembrane domain of APP that affected both gamma- and epsilon-cleavage sites, by raising the A-beta42/40 ratio. The longer A-beta42 peptide is the form that aggregates into toxic amyloid plaques.

New drugs now under development change the location where gamma secretase cleaves the APP protein, thus producing amyloid peptide 38 instead of 42, which is shorter and does not aggregate into plaques.

"Scientists have been trying to target gamma secretase to treat Alzheimer's for over a decade," said senior author Dr. Patrick Fraering, professor of neurosciences at the Ecole Polytechnique Fédérale de Lausanne. "Our work suggests that next-generation molecules, by modulating rather than inhibiting the enzyme, could have few, if any, side-effects. It is tremendously encouraging."

Related Links:

Ecole Polytechnique Fédérale de Lausanne



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.