Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Microgel Insulin Delivery System Mimics Beta-Cell Action

By BiotechDaily International staff writers
Posted on 31 Jul 2013
Diabetes researchers have developed a nanotech technique to transport insulin in the bloodstream and release or sequester the hormone in response to changes in blood sugar levels.

Investigators at the University of North Carolina (Chapel Hill, USA) and their colleagues at the Massachusetts Institute of Technology (Cambridge, USA) used a one-step electrospray procedure to fabricate monodisperse microgels consisting of a pH-responsive chitosan matrix, enzyme nanocapsules, and recombinant human insulin. Glucose-specific enzymes were covalently encapsulated into the nanocapsules to improve enzymatic stability by protecting from denaturation and immunogenicity as well as to minimize loss due to diffusion from the matrix.

The microgel system swelled and released insulin when subjected to hyperglycemic conditions, as a result of the enzymatic conversion of glucose into gluconic acid and protonation of the chitosan network. The microgels acted as a self-regulating valve system by secreting insulin at basal release rates under normoglycemic conditions and at higher rates under hyperglycemic conditions.

Results published in the July 8, 2013, online edition of the journal ACS Nano revealed that in a mouse model of type I diabetes microgel-facilitated insulin release caused a reduction of blood glucose levels that lasted for more than 48 hours.

“The chitosan itself can be absorbed by the body, so there are no long term health effects,” said first author Dr. Zhen Gu, assistant professor of biomedical engineering the University of North Carolina. “We wanted to mimic the function of healthy beta-cells, which produce insulin and control its release in a healthy body, but what we have found also holds promise for smart drug delivery targeting cancer or other diseases.”

Related Links:
University of North Carolina
Massachusetts Institute of Technology



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.