Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Mutant Heat Shock Protein Vaccine Prevents Vitiligo in Mouse Model

By BiotechDaily International staff writers
Posted on 11 Mar 2013
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
An experimental vaccine based on a genetically modified form of inducible heat shock protein 70 (HSP70i) prevented onset and partially cured vitiligo in a mouse model of the disease.

Vitiligo is skin disorder manifested by smooth, white spots on various parts of the body. Though melanocytes, the pigment-making cells of the skin, are structurally intact, they have lost the ability to synthesize the pigment. The reason for the condition is unclear although research suggests that it may arise from autoimmune, genetic, oxidative stress, neural, or viral causes. Individuals with vitiligo (about 1% of the adult population) are usually in good general health, but vitiligo presents a cosmetic problem that can be serious in dark-skinned individuals. Normal skin color rarely returns, and there is no known cure.

Investigators at Loyola University (Chicago, IL, USA) had shown previously that HSP70i played a vital role in the autoimmune response that causes vitiligo. In the current work they genetically modified one of HSP70i's 641 amino acids to create a mutant HSP70i molecule.

The investigators reported in the February 27, 2013, issue of the journal Science Translational Medicine that a vaccine based on the DNA encoding for mutant HSP70i applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T-cell receptor. Furthermore, use of mutant HSP70i therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T-cells from populating mouse skin.

In addition to the dramatic results seen in the mouse model, “The mice look normal,” said senior author Dr. I. Caroline Le Poole, professor of pathology, microbiology, and immunology at Loyola University. Some of the beneficial effects of mutant HSP70i were seen in cultures grown from human vitiligo skin specimens.

Related Links:
Loyola University



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.