Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Mutant Heat Shock Protein Vaccine Prevents Vitiligo in Mouse Model

By BiotechDaily International staff writers
Posted on 11 Mar 2013
Print article
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
An experimental vaccine based on a genetically modified form of inducible heat shock protein 70 (HSP70i) prevented onset and partially cured vitiligo in a mouse model of the disease.

Vitiligo is skin disorder manifested by smooth, white spots on various parts of the body. Though melanocytes, the pigment-making cells of the skin, are structurally intact, they have lost the ability to synthesize the pigment. The reason for the condition is unclear although research suggests that it may arise from autoimmune, genetic, oxidative stress, neural, or viral causes. Individuals with vitiligo (about 1% of the adult population) are usually in good general health, but vitiligo presents a cosmetic problem that can be serious in dark-skinned individuals. Normal skin color rarely returns, and there is no known cure.

Investigators at Loyola University (Chicago, IL, USA) had shown previously that HSP70i played a vital role in the autoimmune response that causes vitiligo. In the current work they genetically modified one of HSP70i's 641 amino acids to create a mutant HSP70i molecule.

The investigators reported in the February 27, 2013, issue of the journal Science Translational Medicine that a vaccine based on the DNA encoding for mutant HSP70i applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T-cell receptor. Furthermore, use of mutant HSP70i therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T-cells from populating mouse skin.

In addition to the dramatic results seen in the mouse model, “The mice look normal,” said senior author Dr. I. Caroline Le Poole, professor of pathology, microbiology, and immunology at Loyola University. Some of the beneficial effects of mutant HSP70i were seen in cultures grown from human vitiligo skin specimens.

Related Links:
Loyola University



Print article

Channels

Genomics/Proteomics

view channel
Image: Molecular model of E3 ubiquitin ligase (green), E2 ubiquitin enzyme (orange), \"activated ubiquitin\" (cyan), and \"allosteric ubiquitin\" (blue) (Photo courtesy of Dr. Bernhard Lechtenberg, Sanford Burnham Prebys Medical Discovery Institute).

Researchers Resolve Molecular Structure of Critical Ubiquitin-Binding Enzyme

The molecular structure of a protein complex critically involved in diverse cellular functions such as cell signaling, DNA repair, and mounting anti-inflammatory and immune responses has been elucidated... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.