Features | Partner Sites | Information | LinkXpress
Sign In

Mutant Heat Shock Protein Vaccine Prevents Vitiligo in Mouse Model

By BiotechDaily International staff writers
Posted on 11 Mar 2013
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
An experimental vaccine based on a genetically modified form of inducible heat shock protein 70 (HSP70i) prevented onset and partially cured vitiligo in a mouse model of the disease.

Vitiligo is skin disorder manifested by smooth, white spots on various parts of the body. Though melanocytes, the pigment-making cells of the skin, are structurally intact, they have lost the ability to synthesize the pigment. The reason for the condition is unclear although research suggests that it may arise from autoimmune, genetic, oxidative stress, neural, or viral causes. Individuals with vitiligo (about 1% of the adult population) are usually in good general health, but vitiligo presents a cosmetic problem that can be serious in dark-skinned individuals. Normal skin color rarely returns, and there is no known cure.

Investigators at Loyola University (Chicago, IL, USA) had shown previously that HSP70i played a vital role in the autoimmune response that causes vitiligo. In the current work they genetically modified one of HSP70i's 641 amino acids to create a mutant HSP70i molecule.

The investigators reported in the February 27, 2013, issue of the journal Science Translational Medicine that a vaccine based on the DNA encoding for mutant HSP70i applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T-cell receptor. Furthermore, use of mutant HSP70i therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T-cells from populating mouse skin.

In addition to the dramatic results seen in the mouse model, “The mice look normal,” said senior author Dr. I. Caroline Le Poole, professor of pathology, microbiology, and immunology at Loyola University. Some of the beneficial effects of mutant HSP70i were seen in cultures grown from human vitiligo skin specimens.

Related Links:
Loyola University



view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more


view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more


view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more


view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.