Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

IDT Acquires SURVEYOR Nuclease Product Line from Transgenomic

By BiotechDaily International staff writers
Posted on 13 Jul 2014
The SURVEYOR line is to be used by Integrated DNA Technologies (IDT; Coralville, IA, USA) primarily to support researchers performing mutation detection and potentially-clinical genome editing, and by Transgenomic, Inc. (Omaha, NE, USA) primarily to support diagnostic and other clinical applications.

IDT, a world leader in custom nucleic acid synthesis, is expanding its offerings by adding the SURVEYOR enzyme and kits of Transgenomic, a global company advancing diagnostics, cytogenetics, and specialized clinical and research services. As part of the agreement, IDT will acquire the SURVEYOR product line and intellectual property. Transgenomic will receive an exclusive license for clinical and diagnostic use of SURVEYOR products from IDT. Additional terms of the acquisition were not disclosed.

The key component of SURVEYOR products is SURVEYOR Nuclease, a member of the CEL nuclease family of mismatch-specific nucleases isolated from celery. SURVEYOR Nuclease has been shown to recognize and cleave mismatches arising from single nucleotide polymorphisms or small insertions or deletions.

The SURVEYOR Mutation Detection Kits provide a simple and robust method for detecting mutations and polymorphisms in DNA. IDT will sell the kits for both gel electrophoresis analysis and use on Transgenomic’s WAVE and WAVE HS systems. Transgenomic will continue to sell and support the WAVE and WAVE HS systems.

In addition, SURVEYOR Mutation Detection has emerged as the method of choice for verifying the outcome of designed genome editing via zinc finger nucleases, TALENs, CRISPR/Cas9 systems, and other emergent technologies. These technologies are being investigated for use in excising defective regions within a genome and replacing them with the correct, desired sequences. For example, clustered regulatory interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) systems, which occur naturally in lower organisms, are being manipulated to provide a flexible, specific, and relatively easy means of modifying mammalian genomes. Scientists are developing CRISPR/Cas9 systems for use in the clinic with the hope that millions of people can be cured of genetic disease.

Stephen Gunstream, Chief Commercial Officer at IDT, said, “We are excited about adding the SURVEYOR product line to our growing molecular biology portfolio. These products will be of great benefit to IDT customers, most of whom are in the field of genetic analysis, and of particular use to those whose work involves mutation detection or validation of CRISPR/Cas9 genome editing. IDT can offer these products with the same speed, quality, and support for which we have become known. We plan to continue developing and commercializing further applications of SURVEYOR Nuclease.”

Paul Kinnon, President and Chief Executive Officer of Transgenomic, said, “The sale of our SURVEYOR Nuclease technology and assets for the research market to IDT allows us to focus more resources on our commercialization efforts in our core Patient Testing, Biomarker Identification, and Genetic Analysis and Platforms business units. By licensing back exclusive rights to clinical and diagnostic uses of the technology, we have ensured that we will have continued access to SURVEYOR technology in high value clinical and pharmaceutical services applications.”

Related Links:

Integrated DNA Technologies
Transgenomic



Channels

Genomics/Proteomics

view channel
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).

Double Targeting Approach Increases Potential for Cancer Treatment with Oncolytic Viruses

Cancer researchers have used a double targeting approach to direct oncolytic viruses specifically to tumor cells where they reproduce until the cancer cells burst, releasing more viruses to infect and... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.