Features Partner Sites Information LinkXpress
Sign In
Demo Company

Radiation Oncology Research Seriously Underfunded by National Institutes of Health

By BiotechDaily International staff writers
Posted on 14 Jun 2013
Print article
Radiation oncology research received only 197 grants, totaling 1.6% (USD 85.5 million) of the USD 5.4 billion in cancer research funding from the National Institutes of Health (NIH; Bethesda, MD, USA) in fiscal year (FY) 2013, according to a new findings.

The findings were published online and in the June 1, 2013, print issue of the International Journal of Radiation Oncology, Biology, Physics (Red Journal), the official scientific journal of the American Society for Radiation Oncology (ASTRO). The study reviewed the more than 50,000 grants funded by the NIH, totaling USD 30.9 billion. Investigation revealed 952 active individual grants in the fields of diagnostic radiology and radiation oncology at the start of FY 2013; the NIH database does not discriminate between the two departments.

Furthermore, study authors conducted a manual identification process of proposals from radiation oncology departments, generating 197 grants in radiation oncology. Of the 197 grants in radiation oncology, 79.2% (156) were in the field of radiation oncology biology; 13.2% (26) were in the medical physics arena as it relates to radiation oncology; and only 7.6% (15) were clinical research of radiation oncology treatment. Forty-three academic institutions were represented in all 197 studies, with 141 grants in year one through five of their funding cycle, and 56 awards in funding year 6-25.

There are 87 academic programs in radiation oncology in the United States listed by the Accreditation Council for Graduate Medical Education; however, only 49.4% have an active research program supported by NIH grants. Academic radiation oncology departments attract the highest percentage of MD/PhD graduates into its residency programs, representing the top tier of medical school graduates. Data from the 2011 US National Resident Matching Program report indicates that there are 75 academic radiation oncology programs in the United States for only 155 radiation oncology physician-residency positions.

This study also provides detailed analysis of the median award size, the professional degree status of the grantees, and which grant funding process within the received the most applications and grants awarded. “Nearly two-thirds of cancer patients receive radiation therapy as part of their cancer treatment protocol, yet only 1.6% of cancer research funding is in the field of radiation oncology. We have a significant disparity in the current level of research support as compared to the relevance of radiation oncology for cancer patients and its highly skilled work force,” said lead study author Michael L. Steinberg, MD, FASTRO, chair of the department of radiation oncology at the David Geffen School of Medicine at the University of California, Los Angeles (UCLA; USA), and the Jonsson Comprehensive Cancer Center at UCLA. “Our study indicates an urgent need to separate radiation oncology data from radiology in the NIH database. It is also essential that radiation oncology receive more substantial funding support so that we, as an integral specialty in cancer care, can continue to improve patient survival and treatment outcomes.”

“In the US, nearly one million cancer patients are treated each year with lifesaving radiation therapy,” said Colleen A. F. Lawton, MD, FASTRO, president of ASTRO and professor, program director and vice-chairman of radiation oncology at the Medical College of Wisconsin (Milwaukee, USA). “We must secure increased research funding to ensure advancement in radiation oncology techniques and protocols.”

In an editorial, also published in the June 1, 2013, issue of the Red Journal, Reshma Jagsi, MD, DPhil, an associate professor in the department of radiation oncology and Center for Bioethics and Social Sciences in Medicine at the University of Michigan (Ann Arbor, MI, USA), and Lynn D. Wilson, MD, MPH, FASTRO, a professor and vice chairman of the department of therapeutic radiology at Yale University School of Medicine (New Haven, CT, USA), detailed several priority areas for radiation oncology research and raise concern for the long-term negative effects of inadequate study funding on patients and professionals. “The data Steinberg and colleagues were able to collect suggests that a critically important field is receiving a surprisingly tiny sliver of the too-small pie of biomedical research funding.” Drs. Jagsi and Wilson concluded. “This pattern is likely to be self-reinforcing—to the peril of patients and society in general—and it merits both attention and action.”

Drs. Jagsi and Wilson noted that several critical areas for research have been recognized in a study conducted by the Radiation Oncology Institute (Fairfax, VA, USA), including quality and safety of radiation delivery, communication, toxicity management and survivorship, comparative successfulness and benefits of radiation therapy, including comparison of outcomes after radiation with outcomes after other treatments and among diverse forms of radiation treatment.

Related Links:

National Institutes of Health
University of California, Los Angeles
University of Michigan
Yale University School of Medicine

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.