Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Canada to Develop New Isotope Production Methods

By BiotechDaily International staff writers
Posted on 11 Mar 2013
An aging reactor and a worldwide looming shortage of medical isotopes has driven Canada to search for alternatives methods to manufacture technetium-99m (99mTc).

At the moment, Canada's only source of the isotope is the National Research Universal (NRU; Chalk River, Ontario, Canada) reactor at Chalk River Laboratories (CRL, Ontario, Canada), which produces about a third of the world's supply. But the reactor has been plagued with safety and operational problems, leading to worldwide shortages, and its license is set to expire in 2016. Consequently, Canada is investing close to USD 21 million in three projects in western Canada that have demonstrated the ability to produce the key medical isotope without a nuclear reactor.

Two of the research institutes, the national laboratory for particle and nuclear physics (TRIUMF; Vancouver, BC, Canada) and the University of Alberta (Edmonton, Canada) are using cyclotron technology to produce the isotope, while the third, Prairie Isotope Production Enterprise (PIPE; Pinawa, MB, Canada), is using a linear accelerator.

In the cyclotron process, the machine bombards a target of molybdenum-100 with high-energy protons, converting some of its atoms to molybdenum-99 (Mo-99). Then chemical processing removes technetium-99 from the target, ready for use. The PIPE technology uses an electron accelerator rather than a nuclear reactor to make the Mo-99. The electron accelerator sprays electricity onto molybdenum metal, which produces the Mo-99 radioisotope. Next, a chemical process is used to fabricate the Tc-99m.

“The Harper Government is investing in Canadian expertise to help ensure new sources of supply for medical isotopes used in diagnosing various diseases, such as cancer and heart disease,” said Joe Oliver Canada’s natural resources minister. “We are investing in the work needed to attract private sector interest and to bring new technologies to market, and to help ensure that isotope production is on a sound commercial footing.”

Tc-99m is obtained from the decay of its parent isotope Mo-99 compounds that are packed into nuclear "generators" and distributed to hospitals, where nuclear medicine specialists can draw off the Tc-99m as needed for about a week. Tc-99m is used in 80% of nuclear medicine diagnostic procedures in Canada, and about 85% of all medical imaging procedures worldwide. It is currently made in reactors in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:

National Research Universal
TRIUMF
Prairie Isotope Production Enterprise



Channels

Genomics/Proteomics

view channel
Image: Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by photoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes (Photo courtesy of Jing Claussen (iThera Medical, Germany)).

Gold Nanotubes Are Novel Agents for Cancer Diagnosis and Treatment

Cancer researchers have produced a highly defined class of gold nanotubes that are suitable for use in animals as in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles.... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.