Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Determining How Low Energy Electrons Damage DNA May Enhance Radiation Protection Strategies

By BiotechDaily International staff writers
Posted on 13 Nov 2013
A new study by a group of French and Canadian researchers has produced clues into a little-examined but common radiation threat to DNA: low-energy electrons (LEEs), with energies of 0–15 eV.

The scientists have devised the preliminary model of a close DNA cellular environment under threat from LEEs, revealing for the first time their effects on DNA in natural, biologic conditions. Their study was published online August 8, 2013, in the Journal of Chemical Physics.

The investigators’ project is a significant move toward determining how LEEs injure DNA because it provides a realistic research platform for analysis of results. The goal is to use this knowledge to improve current uses of radiation, such as in cancer treatments.

“The way by which these electrons can damage DNA, and how much damage they inflict, quantitatively, is of major importance not only for general radiation protection purposes, but also for improving the efficiency and safety of therapeutic and diagnostic radiation therapy,” said Dr. Michel Fromm, the lead researcher from the Université de Franche-Comté (Besançon, France), whose expertise is in creating nanometer-scaled DNA layers. His co-author of the study is Dr. Leon Sanche, of Sherbrooke University (Sherbrooke, QC, Canada), who is one of the world’s leading authorities on LEE research.

The investigators studied specific features of a small DNA molecule called a plasmid on a specialized thin film they created, which was irradiated by an electron gun. The impact generated transient particles called anions, which dissociate into snippets of DNA. When analyzed, these molecular fragments provide clues into the processes of DNA strand breaks and other DNA injuries that health researchers seek to understand, repair, and prevent.

“The fascinating point is that each time the close environment of DNA changes, new mechanisms of interaction of LEEs appear,” Dr. Fromm said.

Related Links:

Université de Franche-Comté
Sherbrooke University



Channels

Genomics/Proteomics

view channel
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).

Promising Cancer Immunotherapy Method Relies on Artificial Magnetic Antigen Presenting Cells

Cancer researchers have developed a method based on magnetic nanoparticles that enables the rapid extraction, enrichment, and expansion of a T-cell population that shows great promise as a tool for immunotherapy.... Read more

Drug Discovery

view channel
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).

Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Partners to Seek Novel Drugs to Treat Fibrotic Diseases

A global biopharmaceutical company and an American university hospital-based research institute have agreed to collaborate on the diagnosis and cure of fibrotic diseases. Fibrotic diseases such as scleroderma, renal fibrosis, and idiopathic pulmonary fibrosis are characterized by the gradual formation of excess fibrous... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.