Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Determining How Low Energy Electrons Damage DNA May Enhance Radiation Protection Strategies

By BiotechDaily International staff writers
Posted on 13 Nov 2013
A new study by a group of French and Canadian researchers has produced clues into a little-examined but common radiation threat to DNA: low-energy electrons (LEEs), with energies of 0–15 eV.

The scientists have devised the preliminary model of a close DNA cellular environment under threat from LEEs, revealing for the first time their effects on DNA in natural, biologic conditions. Their study was published online August 8, 2013, in the Journal of Chemical Physics.

The investigators’ project is a significant move toward determining how LEEs injure DNA because it provides a realistic research platform for analysis of results. The goal is to use this knowledge to improve current uses of radiation, such as in cancer treatments.

“The way by which these electrons can damage DNA, and how much damage they inflict, quantitatively, is of major importance not only for general radiation protection purposes, but also for improving the efficiency and safety of therapeutic and diagnostic radiation therapy,” said Dr. Michel Fromm, the lead researcher from the Université de Franche-Comté (Besançon, France), whose expertise is in creating nanometer-scaled DNA layers. His co-author of the study is Dr. Leon Sanche, of Sherbrooke University (Sherbrooke, QC, Canada), who is one of the world’s leading authorities on LEE research.

The investigators studied specific features of a small DNA molecule called a plasmid on a specialized thin film they created, which was irradiated by an electron gun. The impact generated transient particles called anions, which dissociate into snippets of DNA. When analyzed, these molecular fragments provide clues into the processes of DNA strand breaks and other DNA injuries that health researchers seek to understand, repair, and prevent.

“The fascinating point is that each time the close environment of DNA changes, new mechanisms of interaction of LEEs appear,” Dr. Fromm said.

Related Links:

Université de Franche-Comté
Sherbrooke University



WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.