Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Determining How Low Energy Electrons Damage DNA May Enhance Radiation Protection Strategies

By BiotechDaily International staff writers
Posted on 13 Nov 2013
A new study by a group of French and Canadian researchers has produced clues into a little-examined but common radiation threat to DNA: low-energy electrons (LEEs), with energies of 0–15 eV.

The scientists have devised the preliminary model of a close DNA cellular environment under threat from LEEs, revealing for the first time their effects on DNA in natural, biologic conditions. Their study was published online August 8, 2013, in the Journal of Chemical Physics.

The investigators’ project is a significant move toward determining how LEEs injure DNA because it provides a realistic research platform for analysis of results. The goal is to use this knowledge to improve current uses of radiation, such as in cancer treatments.

“The way by which these electrons can damage DNA, and how much damage they inflict, quantitatively, is of major importance not only for general radiation protection purposes, but also for improving the efficiency and safety of therapeutic and diagnostic radiation therapy,” said Dr. Michel Fromm, the lead researcher from the Université de Franche-Comté (Besançon, France), whose expertise is in creating nanometer-scaled DNA layers. His co-author of the study is Dr. Leon Sanche, of Sherbrooke University (Sherbrooke, QC, Canada), who is one of the world’s leading authorities on LEE research.

The investigators studied specific features of a small DNA molecule called a plasmid on a specialized thin film they created, which was irradiated by an electron gun. The impact generated transient particles called anions, which dissociate into snippets of DNA. When analyzed, these molecular fragments provide clues into the processes of DNA strand breaks and other DNA injuries that health researchers seek to understand, repair, and prevent.

“The fascinating point is that each time the close environment of DNA changes, new mechanisms of interaction of LEEs appear,” Dr. Fromm said.

Related Links:

Université de Franche-Comté
Sherbrooke University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.