Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Determining How Low Energy Electrons Damage DNA May Enhance Radiation Protection Strategies

By BiotechDaily International staff writers
Posted on 13 Nov 2013
A new study by a group of French and Canadian researchers has produced clues into a little-examined but common radiation threat to DNA: low-energy electrons (LEEs), with energies of 0–15 eV.

The scientists have devised the preliminary model of a close DNA cellular environment under threat from LEEs, revealing for the first time their effects on DNA in natural, biologic conditions. Their study was published online August 8, 2013, in the Journal of Chemical Physics.

The investigators’ project is a significant move toward determining how LEEs injure DNA because it provides a realistic research platform for analysis of results. The goal is to use this knowledge to improve current uses of radiation, such as in cancer treatments.

“The way by which these electrons can damage DNA, and how much damage they inflict, quantitatively, is of major importance not only for general radiation protection purposes, but also for improving the efficiency and safety of therapeutic and diagnostic radiation therapy,” said Dr. Michel Fromm, the lead researcher from the Université de Franche-Comté (Besançon, France), whose expertise is in creating nanometer-scaled DNA layers. His co-author of the study is Dr. Leon Sanche, of Sherbrooke University (Sherbrooke, QC, Canada), who is one of the world’s leading authorities on LEE research.

The investigators studied specific features of a small DNA molecule called a plasmid on a specialized thin film they created, which was irradiated by an electron gun. The impact generated transient particles called anions, which dissociate into snippets of DNA. When analyzed, these molecular fragments provide clues into the processes of DNA strand breaks and other DNA injuries that health researchers seek to understand, repair, and prevent.

“The fascinating point is that each time the close environment of DNA changes, new mechanisms of interaction of LEEs appear,” Dr. Fromm said.

Related Links:

Université de Franche-Comté
Sherbrooke University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.