Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

New Understanding of Receptor Regulation Suggests Target for New Drugs

By BiotechDaily International staff writers
Posted on 09 Jan 2013
Print article
A study leading to improved understanding of G-protein coupled receptor regulation suggests a new set of targets for designing drugs to more effectively regulate this medically important family of receptors.

More than one-third of drugs on the market directly or indirectly regulate G protein-coupled receptors (GPCRs). Some indirect drugs trigger beta arrestins that downregulate activated GPCRs mainly by causing the receptors to be removed from the cell surface to be subsequently recycled or, via ubiquitination, degraded. The natural action of beta arrestins lowers the cell surface concentration of GPCRs and so can interfere with drugs designed to directly target GPCRs, in some cases leading to drug tolerance in patients and a need for using higher doses.

The current study, led by principal investigator Carlos E. Alvarez, PhD, at Nationwide Children's Hospital (Columbus, OH, USA), identified related GPCR regulatory roles by another subfamily of arrestins, the “alpha arrestins,” recently discovered by Dr. Alvarez’s laboratory. Using biochemical and imaging approaches, the researchers now found that alpha arrestins respond to ligand-bound receptor activation, and recruit enzymes that chemically modify the receptor to initiate aspects of down-regulation. Time course studies showed that these effects occur in the first 1-5 minutes after ligand activation, the same time frame that beta arrestins are known to trigger receptor downregulation. Using coimmunoprecipitation and co-localization methods, the researchers were also the first to find strong evidence suggesting that alpha arrestins function coordinately with beta arrestins.

"Our findings suggest that alpha arrestins, like beta arrestins, are ubiquitous regulators of G-protein coupled receptor signaling," said Dr. Alvarez. A major effort in current pharmacology is to develop drugs with functional selectivity that target either G protein or beta arrestin signaling effects. Dr. Alvarez foresees alpha arrestins becoming important in refining such efforts. "Just as has been discovered with beta blockers and beta arrestin, I expect we'll find drugs that also have significant alpha arrestin effects," said Dr. Alvarez.

The study was published online December 7, 2012, in the journal PLoS One.

Related Links:
Nationwide Children's Hospital




Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.