Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

New Understanding of Receptor Regulation Suggests Target for New Drugs

By BiotechDaily International staff writers
Posted on 09 Jan 2013
A study leading to improved understanding of G-protein coupled receptor regulation suggests a new set of targets for designing drugs to more effectively regulate this medically important family of receptors.

More than one-third of drugs on the market directly or indirectly regulate G protein-coupled receptors (GPCRs). Some indirect drugs trigger beta arrestins that downregulate activated GPCRs mainly by causing the receptors to be removed from the cell surface to be subsequently recycled or, via ubiquitination, degraded. The natural action of beta arrestins lowers the cell surface concentration of GPCRs and so can interfere with drugs designed to directly target GPCRs, in some cases leading to drug tolerance in patients and a need for using higher doses.

The current study, led by principal investigator Carlos E. Alvarez, PhD, at Nationwide Children's Hospital (Columbus, OH, USA), identified related GPCR regulatory roles by another subfamily of arrestins, the “alpha arrestins,” recently discovered by Dr. Alvarez’s laboratory. Using biochemical and imaging approaches, the researchers now found that alpha arrestins respond to ligand-bound receptor activation, and recruit enzymes that chemically modify the receptor to initiate aspects of down-regulation. Time course studies showed that these effects occur in the first 1-5 minutes after ligand activation, the same time frame that beta arrestins are known to trigger receptor downregulation. Using coimmunoprecipitation and co-localization methods, the researchers were also the first to find strong evidence suggesting that alpha arrestins function coordinately with beta arrestins.

"Our findings suggest that alpha arrestins, like beta arrestins, are ubiquitous regulators of G-protein coupled receptor signaling," said Dr. Alvarez. A major effort in current pharmacology is to develop drugs with functional selectivity that target either G protein or beta arrestin signaling effects. Dr. Alvarez foresees alpha arrestins becoming important in refining such efforts. "Just as has been discovered with beta blockers and beta arrestin, I expect we'll find drugs that also have significant alpha arrestin effects," said Dr. Alvarez.

The study was published online December 7, 2012, in the journal PLoS One.

Related Links:
Nationwide Children's Hospital




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This micrograph depicts the presence of aerobic Gram-negative Neisseria meningitidis diplococcal bacteria; magnification 1150x (Photo courtesy of the CDC - US Centers for Disease Control and Prevention).

Infection by Meningitis Bacteria Depends on Dimerization State of Certain Host Cell Proteins

A team of molecular microbiologists has untangled the complex three-way interaction between the non-integrin laminin receptor (LAMR1), galectin-3 (Gal-2), and the pathogenic bacterium Neisseria meningitidis.... Read more

Lab Technologies

view channel
Image: Yale West Campus is organized into research institutes and core facilities — all designed to promote collaboration and interdisciplinary dialogue (Photo courtesy of Yale University).

American and European Partners Establish a Microscopy Center of Excellence

A prominent American university has announced a partnership agreement with a major European producer of microscopes and imaging tools that will establish a center for the use of cutting-edge imaging technologies... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.