Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

New Understanding of Receptor Regulation Suggests Target for New Drugs

By BiotechDaily International staff writers
Posted on 09 Jan 2013
A study leading to improved understanding of G-protein coupled receptor regulation suggests a new set of targets for designing drugs to more effectively regulate this medically important family of receptors.

More than one-third of drugs on the market directly or indirectly regulate G protein-coupled receptors (GPCRs). Some indirect drugs trigger beta arrestins that downregulate activated GPCRs mainly by causing the receptors to be removed from the cell surface to be subsequently recycled or, via ubiquitination, degraded. The natural action of beta arrestins lowers the cell surface concentration of GPCRs and so can interfere with drugs designed to directly target GPCRs, in some cases leading to drug tolerance in patients and a need for using higher doses.

The current study, led by principal investigator Carlos E. Alvarez, PhD, at Nationwide Children's Hospital (Columbus, OH, USA), identified related GPCR regulatory roles by another subfamily of arrestins, the “alpha arrestins,” recently discovered by Dr. Alvarez’s laboratory. Using biochemical and imaging approaches, the researchers now found that alpha arrestins respond to ligand-bound receptor activation, and recruit enzymes that chemically modify the receptor to initiate aspects of down-regulation. Time course studies showed that these effects occur in the first 1-5 minutes after ligand activation, the same time frame that beta arrestins are known to trigger receptor downregulation. Using coimmunoprecipitation and co-localization methods, the researchers were also the first to find strong evidence suggesting that alpha arrestins function coordinately with beta arrestins.

"Our findings suggest that alpha arrestins, like beta arrestins, are ubiquitous regulators of G-protein coupled receptor signaling," said Dr. Alvarez. A major effort in current pharmacology is to develop drugs with functional selectivity that target either G protein or beta arrestin signaling effects. Dr. Alvarez foresees alpha arrestins becoming important in refining such efforts. "Just as has been discovered with beta blockers and beta arrestin, I expect we'll find drugs that also have significant alpha arrestin effects," said Dr. Alvarez.

The study was published online December 7, 2012, in the journal PLoS One.

Related Links:
Nationwide Children's Hospital




Channels

Genomics/Proteomics

view channel
Image: An adult cardiomyocyte has re-entered the cell cycle after expression of miR302-367 (Photo courtesy of the laboratory of Dr. Edward Morrisey, University of Pennsylvania).

Certain MicroRNAs Stimulate Regeneration of Adult Heart Tissue

Cardiac disease researchers working with a mouse model have discovered that by inducing a subset of microRNAs (miRNAs) that are active during development but silenced in the adult they could cause damaged... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.