Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Mole Rat Cancer Resistance Pathway Discovered

By BiotechDaily International staff writers
Posted on 12 Nov 2012
Image: A blind mole rat shown on the background of dying necrotic blind mole rat tissue culture cells (Photo courtesy of University of Rochester).
Image: A blind mole rat shown on the background of dying necrotic blind mole rat tissue culture cells (Photo courtesy of University of Rochester).
In a study of a species of mole rats, biologists have identified a cancer resistance mechanism different from another long-lived, cancer-resistant mole rat species discovered earlier.

The researchers, led by Professor Vera Gorbunova and Assistant Professor Andrei Seluanov of the University of Rochester (Rochester, NY, USA), found that abnormally growing cells from blind mole rats secrete interferon-beta (IFN-β) that triggers those and neighboring cells to rapidly die. Blind mole rats (BMR) from the Middle East and naked mole rats from Africa, both subterranean rodents with long life spans, are the only examined mammals never known to naturally develop cancer and in which spontaneous tumors have never been observed. Previously, a team led by Profs. Seluanov and Gorbunova identified an anticancer mechanism in the naked mole rat in which the p16 gene causes cancerous cells from these rats to become hypersensitive to overcrowding, preventing them from proliferating further. "We expected blind mole rats to have a similar mechanism [...]. Instead, we discovered they've evolved their own mechanism," said Prof. Seluanov.

In the current study, growth of BMR fibroblast cells in vitro, from the BMR species Spalax judaei and Spalax golani, were examined. The cells were made to actively proliferate for an abnormally large number of population doublings, after which the precancerous-like cells began secreting IFN-β and the cultures underwent massive, concerted necrotic cell death within 3 days. The necrotic cell death phenomenon was independent of culture conditions or telomere shortening. Sequestration of p53 and Rb proteins using SV40 large T antigen completely rescued necrotic cell death. The results suggest that cancer resistance in BMR is conferred by massive necrotic response to overproliferation mediated by p53 and Rb pathways, and triggered by the release of IFN-β.

"Not only were the cancerous cells killed off, but so were the adjacent cells, which may also be prone to tumorous behavior," said Prof. Seluanov. "While people don't use the same cancer-killing mechanism as blind mole rats, we may be able to combat some cancers and prolong life if we could stimulate the same clean sweep reaction in cancerous human cells," said Prof. Gorbunova. Profs. Gorbunova and Seluanov added that next they want to determine what initiates this suicidal secretion of IFN-β.

The study was published online ahead of print November 5, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:
University of Rochester


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Illustration of the apoER2 receptor protein shows the structure of the entire protein in detail (Photo courtesy of Wikimedia Commons).

Risk of Cardiovascular Disease Linked to Apolipoprotein E Variants

The apoE4 variant form of circulating apolipoprotein E (apoE) leads to increased risk of cardiovascular disease by blocking binding of the normal apoE3 form to the apoliprotein E receptor 2 (apoER2) in... Read more

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.