Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Soil Bacteria and Human Pathogens Share Multiple Antibiotic Resistance Genes

By BiotechDaily International staff writers
Posted on 12 Sep 2012
Researchers have used a high-throughput functional metagenomic approach to show that bacteria in the soil have swapped antibiotic-resistance genes with bacteria that cause disease in humans.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) isolated bacteria from soil samples taken at various locations around the United States. Enzymes were used to cut DNA isolated from the soil bacteria into short segments that were randomly inserted into the genome of a strain of Escherichia coli that was vulnerable to antibiotics. Cultures of the E. coli with added soil bacteria genes were then challenged with different antibiotics. DNA was obtained from drug resistant E. coli cultures and analyzed.

The investigators used a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), to identify the antibiotic resistance genes that had been exchanged between environmental bacteria and clinical pathogens. They reported in the August 31, 2012, issue of the journal Science finding seven multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (beta-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that had perfect nucleotide identity to genes from diverse human pathogens.


Some genes were found to be identical not only in the sections of the genes that code for proteins but also in nearby noncoding regions that regulate the genes’ activities. The lack of differences in the resistance genes identified in the study suggests that the transfers of the genes must have occurred fairly recently.


"We wanted to try to get a broader sense of how often and extensively antibiotic-resistance genes are shared between environmental bacteria and pathogens," said senior author Dr. Gautam Dantas, assistant professor of pathology and immunology at Washington University School of Medicine. "I suspect the soil is not a teeming reservoir of resistance genes. But if factory farms or medical clinics continue to release antibiotics into the environment, it may enrich that reservoir, potentially making resistance genes more accessible to infectious bacteria."

Related Links:
Washington University School of Medicine



Channels

Genomics/Proteomics

view channel
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).

Promising Cancer Immunotherapy Method Relies on Artificial Magnetic Antigen Presenting Cells

Cancer researchers have developed a method based on magnetic nanoparticles that enables the rapid extraction, enrichment, and expansion of a T-cell population that shows great promise as a tool for immunotherapy.... Read more

Drug Discovery

view channel
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).

Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Partners to Seek Novel Drugs to Treat Fibrotic Diseases

A global biopharmaceutical company and an American university hospital-based research institute have agreed to collaborate on the diagnosis and cure of fibrotic diseases. Fibrotic diseases such as scleroderma, renal fibrosis, and idiopathic pulmonary fibrosis are characterized by the gradual formation of excess fibrous... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.