Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Soil Bacteria and Human Pathogens Share Multiple Antibiotic Resistance Genes

By BiotechDaily International staff writers
Posted on 12 Sep 2012
Print article
Researchers have used a high-throughput functional metagenomic approach to show that bacteria in the soil have swapped antibiotic-resistance genes with bacteria that cause disease in humans.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) isolated bacteria from soil samples taken at various locations around the United States. Enzymes were used to cut DNA isolated from the soil bacteria into short segments that were randomly inserted into the genome of a strain of Escherichia coli that was vulnerable to antibiotics. Cultures of the E. coli with added soil bacteria genes were then challenged with different antibiotics. DNA was obtained from drug resistant E. coli cultures and analyzed.

The investigators used a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), to identify the antibiotic resistance genes that had been exchanged between environmental bacteria and clinical pathogens. They reported in the August 31, 2012, issue of the journal Science finding seven multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (beta-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that had perfect nucleotide identity to genes from diverse human pathogens.


Some genes were found to be identical not only in the sections of the genes that code for proteins but also in nearby noncoding regions that regulate the genes’ activities. The lack of differences in the resistance genes identified in the study suggests that the transfers of the genes must have occurred fairly recently.


"We wanted to try to get a broader sense of how often and extensively antibiotic-resistance genes are shared between environmental bacteria and pathogens," said senior author Dr. Gautam Dantas, assistant professor of pathology and immunology at Washington University School of Medicine. "I suspect the soil is not a teeming reservoir of resistance genes. But if factory farms or medical clinics continue to release antibiotics into the environment, it may enrich that reservoir, potentially making resistance genes more accessible to infectious bacteria."

Related Links:
Washington University School of Medicine



Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.