Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Soil Bacteria and Human Pathogens Share Multiple Antibiotic Resistance Genes

By BiotechDaily International staff writers
Posted on 12 Sep 2012
Researchers have used a high-throughput functional metagenomic approach to show that bacteria in the soil have swapped antibiotic-resistance genes with bacteria that cause disease in humans.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) isolated bacteria from soil samples taken at various locations around the United States. Enzymes were used to cut DNA isolated from the soil bacteria into short segments that were randomly inserted into the genome of a strain of Escherichia coli that was vulnerable to antibiotics. Cultures of the E. coli with added soil bacteria genes were then challenged with different antibiotics. DNA was obtained from drug resistant E. coli cultures and analyzed.

The investigators used a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), to identify the antibiotic resistance genes that had been exchanged between environmental bacteria and clinical pathogens. They reported in the August 31, 2012, issue of the journal Science finding seven multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (beta-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that had perfect nucleotide identity to genes from diverse human pathogens.


Some genes were found to be identical not only in the sections of the genes that code for proteins but also in nearby noncoding regions that regulate the genes’ activities. The lack of differences in the resistance genes identified in the study suggests that the transfers of the genes must have occurred fairly recently.


"We wanted to try to get a broader sense of how often and extensively antibiotic-resistance genes are shared between environmental bacteria and pathogens," said senior author Dr. Gautam Dantas, assistant professor of pathology and immunology at Washington University School of Medicine. "I suspect the soil is not a teeming reservoir of resistance genes. But if factory farms or medical clinics continue to release antibiotics into the environment, it may enrich that reservoir, potentially making resistance genes more accessible to infectious bacteria."

Related Links:
Washington University School of Medicine



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.